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We provide an overview of groundbreaking studies that laid the foundation for our current
understanding of exercise-induced mitochondrial biogenesis and its contribution to human
skeletal muscle fitness. We highlight the mechanisms by which skeletal muscle responds to
the acute perturbations in cellular energy homeostasis evoked bya single bout of endurance-
based exercise and the adaptations resulting from the repeated demands of exercise training
that ultimately promote mitochondrial biogenesis through hormetic feedback loops. Despite
intense research efforts to elucidate the cellular mechanisms underpinning mitochondrial
biogenesis in skeletal muscle, translating this basic knowledge into improved metabolic
health at the population level remains a future challenge.

Exercise represents a major challenge to mul-
tiple whole-body homeostatic functions. In

an effort to overcome this challenge, numerous
responses take place at the cellular and systemic
levels that operate to blunt the homeostatic
threats generated by exercise-induced increases
in muscle energy turnover and oxygen demand
(Hawley et al. 2014). The capacity of skeletal
muscle to adapt to repeated bouts of activity
such that physical capacity is enhanced is
termed exercise training. When considering en-
durance-based exercise (e.g., sustained activities

that are .10 min duration and performed at
60%–90% of maximal oxygen uptake [VO2max]
including sprint-interval training), the goals of
such exercise are to induce an array of physio-
logical and metabolic adaptations that enable
an individual to increase the rate of energy pro-
duction from both aerobic pathways, maintain
tighter metabolic control (i.e., match adenosine
triphosphate (ATP) production with ATP hy-
drolysis), minimize cellular perturbations, in-
crease efficiency of motion, and improve the
capacity of the trained musculature to resist

Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved

Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686

73

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

mailto:cperry@yorku.ca
mailto:cperry@yorku.ca
http://www.cshperspectives.org/site/misc/terms.xhtml
http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165


fatigue (Hawley 2002). The mechanisms by
which active muscle senses homeostatic pertur-
bations and then translates them into improved
function has been a topic of intense research for
several decades. It is now recognized that a
variety of cellular disruptions take place at the
onset of exercise including (but not limited to)
increased cytoplasmic free [Ca2þ], increased
free AMP (AMPf ) and an increased adenosine
diphosphate (ADP)/ATP ratio, reduced crea-
tine phosphate (PCr) and glycogen levels, in-
creased fatty acid and reactive oxygen/nitrogen
species (ROS/RNS), acidosis, and altered redox
state, including [NAD/NADH] (Hawley et al.
2014). Within the context of metabolic homeo-
stasis, an array of regulatory networks are stim-
ulated that sustain rates of ATP synthesis over
time through the activation of rate-limiting
enzymes controlling carbohydrate and fat ca-
tabolism. A long-standing question in exercise
biology is how these acute disruptions in cellu-
lar signals that maintain energy supply also
stimulate long-term adaptive processes that
improve the ability of muscle to sustain a future
contractile challenge. Indeed, this process of
translating acute threats to essential homeostat-
ic functions into positive adaptations is termed
“hormesis” and underscores the principle of
how exercise improves muscle health.

A key component of improved “muscle fit-
ness” following exercise training is mitochon-
drial biogenesis, a highly coordinated process
that requires the coordination of multiple
cellular events, including transcription of two
genomes (nuclear and mitochondrial), the syn-
thesis of lipids and proteins, and the coordinat-
ed assembly of multisubunit protein complexes
into a functional respiratory chain as reviewed
by Hood (Hood 2001). This sequence of events
ultimately results in an expansion of total mus-
cle mitochondrial volume and this greater mi-
tochondrial network improves the cell’s ability
to match ATP production with ATP hydrolysis,
thereby minimizing the very disruptions to cel-
lular homeostasis that occurred in the first place
(Fig. 1). This review will present a brief histor-
ical overview of some of the seminal discoveries
that have helped unravel the cellular events that
underpin mitochondrial biogenesis as well as

the more recent explosion of research into our
current understanding of the signaling and
genomic mechanisms regulating this process.
We will focus on major breakthroughs in this
area and for more detailed discussion of specific
topics, the reader is referred to other reviews
describing the various signaling networks in-
volved in mitochondrial biogenesis following
exercise (Wu et al. 1999; Lin et al. 2005; Hood
et al. 2011).

EXERCISE TRAINING–INDUCED INCREASES
IN MITOCHONDRIA AND ENDURANCE
CAPACITY

Early work in the 1950s on a variety of animal
species revealed a strong relationship between
the ability of a muscle to perform prolonged
submaximal exercise and its content of respira-
tory enzymes (Paul and Sperling 1952; Lawrie
1953). Based on these observations, Holloszy
(1967) hypothesized that such differences
might be the result of an “adaptive process”
that is linked to the level of habitual muscle
contractile activity. To test this possibility, Hol-
loszy subjected rats to a vigorous and intense
program of treadmill running and showed
exercise training induced an increase in skeletal
muscle mitochondrial enzyme activities (Hol-
loszy 1967). In that study, mitochondria from
muscles of exercise-trained animals showed
higher levels of respiratory control and tightly
coupled oxidative phosphorylation compared
with muscle from untrained animals. This in-
crease in electron transport capacity was associ-
ated with a concomitant increase in the ability
to produce ATP and was, in large part, respon-
sible for the prolonged endurance running time
observed after training. A key innovation of
Holloszy’s exercise protocol was the use of
intense interval run training, based on a recog-
nition that any exercise signal needed to exceed
a minimum “threshold stimulus” to induce
metabolic and morphological adaptations in
muscle. Indeed, the training regimen pioneered
by Holloszy might be viewed as the original
prototype for the current wave of sprint-inten-
sity interval training protocols now widely
accepted as a potent stimulus for physiological
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remodeling in humans (MacDougall et al. 1998;
Parra et al. 2000; Rodas et al. 2000; Burgomaster
et al. 2005; Perry et al. 2007, 2008; Yeo et al.
2008; MacInnis and Gibala 2016).

The work of Holloszy (1967) showed that
skeletal muscle displays a remarkable plasticity,
with the capacity to alter both the type and
amount of protein in response to disruptions
in cellular homeostasis induced by the habitual
level of contractile activity. That study (Holloszy
1967) paved the way for subsequent work show-
ing that increases in mitochondrial enzyme ac-
tivity in rodent muscle following several weeks
of exercise training were related to a greater mi-
tochondrial number and size with more densely
packed cristae (Gollnick and King 1969). A
crucial finding was that the increased mito-
chondrial enzyme activities following training

were not accompanied by increases in the cyto-
solic enzymes creatine kinase and adenylate ki-
nase, giving credibility to the idea that improved
ATP synthesis via oxygen-dependent pathways
was a defining feature of exercise trained muscle
(Oscai and Holloszy 1971). Subsequent studies
in humans corroborated this hypothesis. Lon-
gitudinal exercise training (Varnauskas et al.
1970) and cross-sectional comparisons between
trained and untrained men revealed higher
maximal mitochondrial enzyme activities in
samples taken from the vastus lateralis muscle
(Booth and Narahara 1974) and greater mito-
chondrial volume based on electron microsco-
py techniques (Hoppeler et al. 1973) that were
positively associated with training-induced
improvements in whole-body maximal oxygen
uptake (VO2max). Longitudinal studies also
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Figure 1. Schematic of the time course of events coupling contractile stimuli to mitochondrial biogenesis
through hormetic feedback signals. Acute endurance-based exercise challenges the capacity of skeletal muscle
to maintain both energy and calcium homeostasis (among other systems). Repeated increases in cytosolic (free
AMP [AMPf ]/adenosine triphosphate [ATP]) (because of ATP turnover) and calcium activate the AMP-
activated protein kinase (AMPK) and Ca2þ-sensitive signaling kinases, respectively, which activate specific
proteins regulating gene transcription. Successive exercise sessions (i.e., endurance exercise training) results
in repeated and transient increases in messenger RNA (mRNA) encoding mitochondrial proteins as well as
transcriptional proteins, which likely enhance the genomic response to subsequent exercise challenges. The
repeated drive for protein translation increases mitochondrial protein import and assembly, thereby expanding
mitochondrial volume. The hormetic response is complete when the functional capacity of mitochondria has
improved, which enables the muscle to better maintain energy and calcium homeostasis during future chal-
lenges. MAPK, Mitogen-activated protein kinase; CaMK, calmodulin-dependent protein kinase. (From Hood
2001; adapted, with permission.)
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showed that endurance training increased
mitochondrial content concurrent with mito-
chondrial enzyme activities and VO2max, but
such an effect was attenuated in older individ-
uals (Kiessling et al. 1974). These findings were
the first to suggest that the muscle’s “plasticity
capacity” may be compromised with aging.
Nevertheless, these findings contributed to the
belief that whole-body aerobic capacity was lim-
ited not only by the oxygen delivery/transport
system (i.e., “central” cardiorespiratory factors)
but potentially by “local” skeletal muscle mito-
chondrial content, consistent with the working
muscle’s role as the end user of oxygen during
ATP production.

In the 1970s in North America, a series of
independent but related studies conducted
largely in rodents contributed to a model that
sought to explain how mitochondrial content
was related to improved metabolic control in
skeletal muscle during exercise. This model
held that a greater mitochondrial content
improved respiratory sensitivity to free ADP
(ADPf ), whereby a given rate of aerobic ATP
production necessary to support muscle con-
traction would require a smaller increase in
[ADPf ] at the onset of exercise caused by the
expanded mitochondrial volume (Oscai and
Holloszy 1971; Gollnick et al. 1973; Holloszy
and Booth 1976; Holloszy and Coyle 1984).
Simultaneously, in Europe, this concept was
further developed in studies of human skeletal
muscle. Specifically, it was proposed that the
accelerated induction of oxygen consumption
at the onset of heavy exercise would be attenu-
ated by exercise training, decreasing the rise in
modulators of oxidative phosphorylation that
would result in less stimulation of glycolysis
and a greater proportion of energy being de-
rived from fat oxidation (Gollnick and Saltin
1982). This premise was elegantly tested by a
seminal investigation from Terjung’s group in
1987 in which they compared skeletal muscle
from trained and untrained rats. This study
showed that a greater training-induced increase
in the maximal activity of cytochrome c oxidase
(a marker of mitochondrial content) was asso-
ciated with less of an increase in ADPf during
acute muscle contraction in the face of less

usage of PCr and flux of ATP to AMP and
IMP as well as decreased glycolysis (Dudley
et al. 1987). These associations were, at the
time, viewed as compelling evidence for the
major role that mitochondria played in overall
metabolic control in skeletal muscle. Arising
from these and other observations, renewed
interest focused on the potential mechanisms
by which exercise training stimulated mito-
chondrial biogenesis. Despite the complexity
of exercise training–induced response, largely
arising from training protocols of different
intensity, volume, and duration, there was an
association between the improvements in mito-
chondrial oxidative capacity and the intensity
of training (Dudley et al. 1982), although dif-
ferences in muscle fiber types sometimes con-
founded this observation (Hickson et al. 1976;
Dudley et al. 1982). Nonetheless, work at that
time stimulated great interest in the cellular
signals generated during exercise and how they
manifested in the greater training-induced mi-
tochondrial content. However, it was not until
the late 1980s that exercise was shown to stimu-
late the expression of nuclear genes that encoded
mitochondrial proteins, albeit through unknown
signaling cascades and genetic regulators.

THE DAWN OF MOLECULAR BIOLOGY

The Molecular Basis of Exercise
Training–Induced Mitochondrial Biogenesis

One of the first studies to probe the molecular
basis of how muscle contraction increases mi-
tochondrial proteins was that of Williams et al.
(1986). These researchers observed increases
in cytochrome b messenger RNA (mRNA) as
well as markers of mitochondrial content (cit-
rate synthase [CS] activity and mitochondrial
DNA) following a protocol of chronic electrical
stimulation of rabbit tibialis anterior muscle.
The increase in CS activity suggested contrac-
tion coordinated the expression of the nuclear
genome with the mitochondrial genome (cyto-
chrome b mRNA) (Williams et al. 1986). Such
a premise was subsequently proven when Hood
and coworkers (Hood et al. 1989) showed that
chronic contraction of rat tibialis anterior coor-
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dinated the expression of a complex mitochon-
drial respiratory protein complex—cytochrome
c oxidase—that is derived from both genomes.
It was also verified that increases in both CS
activity and mitochondrial DNA expression
(mRNA) increased following short-term exer-
cise training in rodents (Morrison et al. 1989).
Such increases in CS activity following exercise
training were later shown to be related to sus-
tained increases in CS mRNA for at least 24
hours after a single bout of exercise but also after
1 week of training (Neufer and Dohm 1993),
which further cemented the concept that
protein translation stems from repeated but
transient increases in mRNA content.

The next two decades marked the discovery
of several transcription factors with important
roles in the regulation and expression of the
nuclear genes encoding mitochondrial pro-

teins. It was recognized that specific families
of mitochondrial proteins are regulated by spe-
cific transcription factors, including nuclear re-
spiratory factors 1 and 2 (NRF-1 and NRF-2)
that bind to the promoters and activate tran-
scription of genes that specifically encode mito-
chondrial respiratory chain proteins (Chau
et al. 1992; Kelly and Scarpulla 2004; Scarpulla
2006). Moreover, the belief that both nuclear
and mitochondrial genomes may be coordi-
nately regulated gained the ascendancy. Initially,
it was found that NRF-1 activates expression of
the nuclear gene that encodes mitochondrial
transcription factor A (TFAM), which accumu-
lates in the mitochondria and regulates tran-
scription of the mitochondrial DNA (Fig. 2)
(Gordon et al. 2001) (i.e., the mitochondrial
genome). Given that not all promoters of
genes transcribing mitochondrial proteins have
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Figure 2. Transcriptional control of mitochondrial biogenesis. Stimuli generated during contraction are trans-
mitted by specific signaling cascades to the transcriptional cofactor peroxisome proliferator-activated receptor g
coactivator (PGC)-1a, which translocates into the nucleus and coactivates several other transcription factors
that regulate specific genetic programs encoding families of mitochondrial proteins. Both PGC-1a and a
homologous isoform PGC-1b are involved but have been shown to be dispensable in this process (Ballmann
et al. 2016), suggesting redundant signals exist that do not require these coactivators (not shown). Subsequent
increases in steady-state messenger RNA (mRNA) drive protein translation that leads to expansion of the
mitochondrial reticulum. An autoregulatory loop exists whereby PGC-1a induces its own expression leading
to increases in PGC-1a protein following exercise. Contraction also induces the expression of mitochondrial
DNA that encodes specific proteins within the electron transport chain. MEF, Myocyte enhancer factor; PPAR,
peroxisome proliferator-activated receptor coactivator; NRF, nuclear respiratory factor; TFAM, mitochondrial
transcription factor A; ADPf, free ADP; AMPf, free AMP; mtDNA, mitochondrial DNA.
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NRF-1-binding sites, other transcription fac-
tors are obviously involved in contractile-mod-
ulated mitochondrial biogenesis, including the
peroxisome proliferator-activated receptor co-
activators (PPARs), which regulate expression
of the mitochondrial fatty acid oxidative
enzymes (Kelly and Scarpulla 2004). Another
major breakthrough was the discovery of the
peroxisome proliferator-activated receptor g

coactivator 1a (PGC-1a), an inducible coacti-
vator that regulates the coordinated expression
of mitochondrial proteins encoded in the nu-
clear and mitochondrial genomes (Puigserver
et al. 1998; Wu et al. 1999; Hood 2001; Scarpulla
2002; Lin et al. 2005; Scarpulla 2006). An
important functional feature of the PGC-1a
coactivator is that it interacts with different
transcription factors to activate distinct biolog-
ical programs in different tissues rather than
bind to DNA directly (Puigserver et al. 1998;
Wu et al. 1999; Hood 2001; Scarpulla 2002;
Lin et al. 2005; Martinez-Redondo et al.
2015). Indeed, the effect of PGC-1a on mito-
chondrial biogenesis is probably explained at
least in part by the finding that in addition to
being a coactivator of PPARg, PGC-1a coacti-
vates NRF-1 (Wu et al. 1999), and PPARa (Vega
et al. 2000). PPARa plays a key role in the
transcriptional control of the mitochondrial
enzymes involved in the oxidation of fatty acids
(Gulick et al. 1994), which may represent one
mechanism by which exercise improves the
capacity for fat oxidation. Similar roles in
mitochondrial biogenesis were also discovered
for PGC-1b (Lin et al. 2002a; Meirhaeghe et al.
2003; Lelliott et al. 2006).

With regard to exercise-induced skeletal
muscle adaptation, PGC-1a has been proposed
as a key regulator of mitochondrial biogenesis
that responds to neuromuscular input and the
prevailing contractile activity. A single bout of
endurance exercise induces a rapid increase in
PGC-1a mRNA and protein in both rodent
(Baar et al. 2002; Terada et al. 2002; Meirhaeghe
et al. 2003; Koves et al. 2005; Frier et al. 2011)
and human skeletal muscle (Pilegaard et al.
2003; Norrbom et al. 2004; Watt et al. 2004;
Cartoni et al. 2005; Russell et al. 2005; Hellsten
et al. 2007; Mortensen et al. 2007; De Filippis

et al. 2008; Mathai et al. 2008; Edgett et al. 2013;
Cochran et al. 2014). Egan et al. (2010) reported
a graded response whereby larger increases in
PGC-1a mRNA in skeletal muscle of untrained
humans were seen with energy-matched work
bouts of short duration and high intensity
(�80% VO2peak) compared with prolonged du-
ration, low-intensity (�40% VO2peak) cycling.
Similar findings were seen by Edgett et al.
(2013), although the magnitude of PGC-1a
mRNA increase was attenuated at exercise
above VO2max. Moreover, the graded response
of PGC-1a mRNA and exercise intensity ob-
served in the study by Egan et al. (2010) was
associated with a greater upstream phosphory-
lation of the AMP-activated protein kinase
(AMPK), Ca2þ/calmodulin-dependent protein
kinase (CaMK)II, and the p38 mitogen-activat-
ed protein kinase (p38 MAPK), which are bona
fide energy-exercise-sensitive kinases, and also
regulate PGC-1a transcription and/or activity
(discussed in a subsequent section) (Puigserver
et al. 2001; Akimoto et al. 2005; Irrcher et al.
2008). Furthermore, a single bout of exercise
has been associated with accumulation of
PGC-1a in both nuclear (Wright et al. 2007;
Little et al. 2010; Safdar et al. 2011) and mito-
chondrial (Safdar et al. 2011) compartments
possibly following its translocation from the
cytoplasm.

Endurance exercise training also increases
PGC-1a mRNA expression as well as protein
in both rodent and human skeletal muscle
(Goto et al. 2000; Pilegaard et al. 2003; Russell
et al. 2003; Short et al. 2003; Taylor et al. 2004;
Garcia-Roves et al. 2006; Kuhl et al. 2006;
Sriwijitkamol et al. 2006; Perry et al. 2010;
Granata et al. 2016), further supporting its
role in regulating mitochondrial biogenesis.
The increase in PGC-1a protein with exercise
training is likely related to the fact that PGC-1a
autoregulates its own promoter through the
transcription factor myocyte enhancer factor 2
(MEF2) (Fig. 2) (Handschin et al. 2003). Addi-
tional evidence for a key role for PGC-1a in
exercise training comes from studies in which
PGC-1a has been overexpressed in skeletal mus-
cle resulting in a “classic” exercise-adaptation
profile, including a large increase in functional
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mitochondria (Lin et al. 2002b), improvements
in whole-body VO2max, a shift from carbohy-
drate to fat fuels during submaximal exercise,
and improved endurance performance (Calvo
et al. 2008). The notion that PGC-1a is essential
for endurance training adaptation, however, has
been challenged by findings that contraction-
induced mitochondrial biogenesis is still ob-
served in PGC-1a knockout mice (Leick et al.
2008) or double PGC-1a/b isoform knockouts
(Ballmann et al. 2016). This biological redun-
dancy indicates that perhaps the only obligatory
response to exercise is the defense of homeosta-
sis itself (Hawley et al. 2014) and serves to high-
light the complex and extensive network of
responses involved in exercise, involving many
interdependent pathways with a high degree of
cross talk, feedback regulation, and transient
activation. Notwithstanding the results from
“loss-of-function” models, it seems safe to
place PGC-1a as a central player in orchestrat-
ing many of the oxidative adaptations to exer-
cise. Of recent interest are the observations that
commencing endurance-based exercise with
low muscle glycogen availability results in great-
er activation of many signaling proteins with
putative roles in mitochondrial biogenesis
compared with when the same exercise is un-
dertaken with normal glycogen concentration
(Hawley and Morton 2014). These findings
suggest that nutrient availability is a potent
signal that can modulate the acute cellular re-
sponses to a single bout of exercise. When exer-
cise sessions are repeated (i.e., training) in the
face of low glycogen availability, the phenotypic
adaptations resulting from such interventions
are also augmented.

Recently, the tumor suppressor protein p53
has emerged as another transcription factor
with a role in exercise-induced mitochondrial
biogenesis in skeletal muscle. This protein is
presumably activated by the AMPK and/or
p38 MAPK (see subsequent discussion). In-
deed, p53 knockout mice showed that p38
MAPK was not activated following exercise
concomitant with an attenuated activation of
AMPK as well as CaMKII (see below) (Saleem
et al. 2014). Furthermore, p53 knockout mice
display reduced endurance exercise capacity

compared with wild-type mice, along with
reduced subsarcolemmal and intermyofibrillar
mitochondrial content and PGC-1a expression
and an absence of mRNA transcripts related to
mitochondrial biogenesis following exercise
(Saleem et al. 2009). It has been suggested that
p53 regulates exercise-induced mitochondrial
biogenesis through its interaction with TFAM
in the mitochondria, which coordinates expres-
sion of the mitochondrial genome (Bartlett
et al. 2014).

Sending the Signal: From Kinase Activation
to Increased Gene Expression

Although intense research efforts focused on
several transcription factors involved in
contraction-induced mitochondrial biogenesis,
studies were also being undertaken to discover
the “missing link” between upstream signaling
cascades and the increased gene expression
following exercise. In this regard, the AMPK
was revealed to be an important regulator of
PGC-1a. AMPK is a member of a metabolite-
sensing protein kinase family that functions as a
metabolic “fuel gauge” in skeletal muscle, con-
sisting of an a catalytic and b and g regulatory
subunits that exist in multiple isoforms and are
all required for full enzymatic activity. Seminal
work discovered the AMPK was triggered in
response to exercise-induced elevations in
[AMPf ] (Winder et al. 2000) and that this
activation of AMPK was exercise intensity-
dependent (Chen et al. 2003; Wadley et al.
2006). In this context, the insights of Holloszy
(1967) made almost five decades ago are of
relevance. In this study, Holloszy speculated
that “the intracellular concentrations of numer-
ous substances, including pyruvate, lactate, Pi,
ADP, and AMP . . . may act as an inducer of
the biosynthesis of the enzymes involved in
mitochondrial electron transport.” Support
for this contention is evidence from human
work showing that the rapid and transient
activation of AMPK after strenuous exercise is
associated with peak elevations in [AMPf ]
(McConell et al. 2005). After a period of train-
ing, these rapid increases in [AMPf ] and AMPK
activation are attenuated during exercise under-
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taken at the same absolute (pretraining)
work rate, which may, in part, explain why
mitochondrial biogenesis slows and eventually
reaches a plateau (McConell et al. 2005). This is
consistent with the concept that muscle adap-
tation is a product of persistent disruptions
to cellular homeostasis, which improves the
ability of muscle to maintain cellular homeosta-
sis during a subsequent exercise challenge (i.e.,
“hormesis”) and explains the attenuated activa-
tion of mRNA transcripts for mitochondrial
biogenesis as training progresses (Perry et al.
2010), although this observation is equivocal
(Pilegaard et al. 2003). Such observations pro-
vide, in part, mechanistic evidence for why
training regimens must use a progressive over-
load stimulus to the contracting muscles once
adaptation and/or performance has plateaued.

AMPK induces mitochondrial biogenesis
partly by directly phosphorylating and activat-
ing PGC-1a (Jager et al. 2007) as well as the
transcriptional repressor histone deacetylase 5
(HDAC5), which relieves inhibition of the
transcription factor myocyte enhancer factor 2
(MEF2), a known regulator of the PGC-1a gene
(McGee and Hargreaves 2010). Although
whole-body deletion of AMP b2 reduces
muscle AMPK activity and exercise capacity
(Steinberg et al. 2010), deletion of the a subunit
of AMPK does not impair exercise-induced mi-
tochondrial biogenesis (Jorgensen et al. 2005;
Fentz et al. 2015). These and the results of other
studies clearly show that normal responses and
adaptations to both acute exercise and chronic
exercise training can be seen when one or more
key pathways are absent or blocked, indicating
that there is both biological redundancy and
compensatory up-regulation of other exercise-
induced pathways with putative roles in mito-
chondrial biogenesis.

A second critical signal that promotes mi-
tochondrial biogenesis is the pulsatile increase
in [Ca2þ] observed at the onset of muscle
contraction. Early work compared a variety of
calcium signaling pathways, including calci-
neurin (CaN) and isoforms of calmodulin
kinase (CaMK) that were known to be regula-
tors of PGC-1a expression itself (CaN; Hand-
schin et al. 2003) or mitochondrial biogenesis

in nonexercise models (CaMK; Wu et al. 2002;
Wright 2007). Studies inhibiting or deleting
each protein in mouse models revealed that
exercise-induced mitochondrial biogenesis was
unaffected (Akimoto et al. 2004; Garcia-Roves
et al. 2006), despite the fact that at least CaMK is
activated in association with increased calcium
spikes in human muscle during exercise (Rose
and Hargreaves 2003; Rose et al. 2007). The
consistent activation of these pathways during
exercise suggests they have some role in the
adaptive process to exercise, but that there exists
physiological redundancy as with the PGC-1
isoforms (discussed previously).

The p38 MAPK is another calcium-signal-
ing pathway that plays a role in contraction-
induced mitochondrial biogenesis. The p38
MAPK phosphorylates and activates PGC-1a
(Knutti et al. 2001; Puigserver et al. 2001; Fan
et al. 2004) and translocates PGC-1a from the
cytoplasm to the nucleus before increases in
gene transcripts for mitochondrial proteins
(Wright 2007). As discussed above, the translo-
cation of PGC-1a first reported in rat muscle
and subsequently verified in humans (Little
et al. 2010) is thought to be a major mechanism
by which PGC-1a activity was regulated by
contraction. Indeed, the balance of evidence
suggests that the AMPK and p38 MAPK are
two important signaling cascades that converge
on PGC-1a and consequently the regulation of
mitochondrial biogenesis through contraction-
mediated perturbations in muscle metabolites
(i.e., [AMPf ]/[ATP]) and ionic status (i.e.,
calcium handling). Overall, Ca2þ is a major
contraction-induced stimulus for PGC-1a-me-
diated mitochondrial biogenesis (Chin 2005;
Wright 2007), but the relative importance of
each pathway following exercise remains to be
determined.

Time Course of Events Leading to Exercise
Training–Induced Mitochondrial Biogenesis

The time course of the exercise-induced in-
creases in mRNA and protein are discordant,
indicating that the extent to which a protein
will increase in response to an adaptive stimulus
cannot be predicted from the increase in mRNA
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alone. As previously noted (Baar et al. 2002),
this makes the measurement of protein concen-
trations critical when studying the adaptive
responses to exercise. It has been proposed
that the exercise-induced increase in mitochon-
drial content is the result of the cumulative
effects of repeated but transient increases in
mRNA, encoding mitochondrial proteins that
occurred in the recovery period from successive
and additive exercise challenges (Williams and
Neufer 1996; Pilegaard et al. 2000; Booth
and Neufer 2006). To test this hypothesis, two
short-term human training studies using serial
muscle biopsy sampling throughout the train-
ing intervention have recently been reported
(Perry et al. 2010; Egan et al. 2013). These in-
vestigations examined the early time course of
several potential transcriptional, translational,
and morphological processes that are involved
in mitochondrial biogenesis during exercise
training in human skeletal muscle. These stud-
ies used high-intensity interval training (HIIT)
performed daily (14 sessions, 2 weeks) (Egan
et al. 2013) or on every other day (nine sessions,
3 weeks) (Perry et al. 2010). Perry et al. (2010)
showed an increase in exercise-induced mRNA
before the initial increase in protein for specific
mitochondrial enzymes and transcription pro-
teins including both PGC-1 isoforms. However,
both the timing and magnitude of mRNA
and protein responses varied considerably for
mRNA encoding transcriptional and mito-
chondrial proteins as well as the protein con-
tents themselves, which was also shown by Egan
et al. (2013). Furthermore, the mRNA response
to exercise was attenuated as the muscle adapted
to the exercise challenge, even as the training
intensity increased (Perry et al. 2010), although
this is not seen for all proteins (Egan et al. 2013)
but may depend on the biopsy time-point. Tak-
en collectively, these studies showed diverse
time-dependent responses in genes encoding
transcription factors and mitochondrial pro-
teins, as well as protein accumulation of selected
markers of mitochondrial biogenesis, and high-
light how the induction and perpetuation of
mitochondrial biogenesis involves time-depen-
dent roles for different transcriptional targets.
Furthermore, these studies showed, in humans,

the important concept that early and rapid up-
regulation of transcriptional proteins during
training likely amplifies the “transcriptional
sensitivity” (Perry et al. 2010) of the cell to a
subsequent bout of exercise, thereby permitting
sustained synthesis of mitochondrial proteins
(Fig. 3). However, the precise role of increased
mitochondrial content in mediating improved
metabolic control early in training was chal-
lenged in the 1990s when reduced glycogenoly-
sis and lactate accumulation were noted after
only 5–7 days of training without concomitant
increases in succinate dehydrogenase and CS
(Green et al. 1992). The interplay between
mitochondrial content and nonmitochondrial
adaptations such as improved regulation of
muscle blood flow, substrate transport, and
posttranslational control of metabolic proteins
remains an outstanding challenge to be resolved.

OTHER MECHANISMS PROMOTING
MITOCHONDRIAL BIOGENESIS

Although considerable work has shown that
additional regulation of mitochondrial biogen-
esis exists at the level of protein import into
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Figure 3. Schematic representation of how repeated
transient increases in the transcriptional cofactor
peroxisome proliferator-activated receptor coactiva-
tor 1a (PGC-1a) messenger RNA (mRNA) after
acute exercise sessions drives the continued accumu-
lation of PGC-1a protein. Early increases in PGC-1a
protein contribute to gradual increases in citrate syn-
thase (CS) activity (a marker of mitochondrial bio-
genesis) by inducing expression of CS mRNA (not
shown). Data was acquired throughout 2 weeks of
high-intensity interval cycling training in human
skeletal muscle. (From Perry et al. 2010; reproduced,
with permission, from the authors.)
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mitochondria following muscle contraction
in rodents (Joseph et al. 2010; Hood et al.
2011), less attention has focused on posttran-
scriptional control at the level of protein trans-
lation or mRNA stability. Recent results suggest
mRNA stability decreases with muscle contrac-
tion or exercise in rodents (Lai et al. 2010) along
with increased mRNA-destabilizing proteins
(Lai et al. 2010; Matravadia et al. 2013) and
possibly with mRNA-stabilizing proteins (Lai
et al. 2010). In this regard, it has been suggested
that mRNA destabilization is actually beneficial
for accelerating adaptive responses in a subse-
quent bout of contraction (Lai et al. 2010).
Alternatively, automatic degradation following
mRNA synthesis may ensure that tight control
of mitochondrial biogenesis is maintained at all
times to avoid excessive protein translation. Mi-
tochondrial degradation through “mitophagy”
may lead to a new era of research of how exercise
may promote mitochondrial degradation as a
“quality control” measure to facilitate regener-
ation as previously shown in rodents through a
PGC1a-dependent manner (Vainshtein et al.
2015). Furthermore, mitochondrial biogenesis
likely involves an extensive remodeling process
whereby mitochondria are formed into a tubu-
lar reticulum particularly in intermyofibrillar
mitochondria that shape them around the myo-
fibrils (Ogata and Yamasaki 1997), which likely
optimizes spatial distribution of energy. On this
note, exercise training increases human muscle
mitochondrial fission proteins but not fusion
proteins (Perry et al. 2010; Egan et al. 2013),
suggesting fission is an important component
of the mitochondrial remodeling that likely
takes place during reticulum elongation follow-
ing training (Kirkwood et al. 1987). What is
apparent is that the proteins that undergo cu-
mulative responses to endurance-based exercise
training are in a constant state of flux, the con-
centration of which reflects the balance between
synthesis and degradation at any given time.
In addition, those proteins with fast turnover
rates that show rapid, but unsustained, changes
in mRNA expression in response to exercise
(e.g., transcription factors, activating cofactors,
etc.) may be critical for amplifying the induc-
tion of genes encoding for proteins with longer

half-lives that increase progressively with
training. Finally, although the intense focus on
AMP and calcium signal induction of mito-
chondrial biogenesis has dominated much of
the literature, the role of ROS (Powers et al.
2011; Gomez-Cabrera et al. 2015), fatty acid
ligands on PPARs (Gilde and Van Bilsen
2003), NAD/NADH via sirtuin-mediated de-
acetylation (White and Schenk 2012; Hood
et al. 2016), and other signals have been impli-
cated as additional regulators. However, the
relative importance of each signal remains to
be determined.

Since publication of the seminal investiga-
tion by Holloszy (1967), considerable effort
from many independent laboratories around
the world have advanced our understanding
of how exercise activates cellular, molecular,
and biochemical pathways with regulatory roles
in the training-response adaptation. However,
much work still remains before we fully under-
stand how additional levels of control regulate
the increased mitochondrial oxidative capacity
that occurs with exercise training. The pioneer-
ing study of Holloszy (1967) laid the foundation
on which much of our present knowledge of
exercise training–induced mitochondrial bio-
genesis has been based, and paved the way for
new and future discoveries in the field.

CONCLUDING REMARKS: FUTURE
CHALLENGES—KNOWLEDGE
TRANSLATION AND HEALTH PROMOTION

During the past two decades, the application of
molecular techniques to exercise biology has led
to the identification of multiple molecular
pathways with key roles in promoting exercise
training–induced mitochondrial biogenesis.
However, linking many of these signaling cas-
cades to defined metabolic responses and
specific changes in gene expression in skeletal
muscle that occur after exercise has proved more
difficult. This is because many of these pathways
are not linear but are instead part of a complex
network, with a high degree of cross talk, feed-
back regulation, and transient activation (Haw-
ley et al. 2014). The advances of various “omics”
approaches along with the application of com-
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putational and systems biology approaches to
problems in exercise biology should facilitate
future progress in this domain, but this will
require the integration of data from multiple
platforms and require large sample sizes,
big data sets, and expertise in computational
biology to resolve the complex biology associ-
ated with diverse exercise responses (Zierath
and Wallberg-Henriksson 2015). Although the
health-promoting benefits of exercise have been
recognized for centuries, direct evidence linking
such effects to specific health outcomes and
understanding how these effects exert their
benefits in different populations remains elusive
and a challenge for future research (Neufer et al.
2015). A major step toward this goal will be to
identify the molecules that are altered in key
organs/tissues in response to exercise training
and how these responses differ between individ-
uals (i.e., high versus low exercise responders).
In this regard, gene variants may set the upper
limit to an individual’s capacity to adapt to
exercise training or even the desire/will to exer-
cise. The interplay between genes and environ-
ment may alter our epigenome and impact our
own health by modifying the transcriptional
potential of a cell or organ to adapt to changes
in any exercise training protocol (Zierath and
Wallberg-Henriksson 2015). Future research in
the field of exercise biology requires increasingly
sophisticated approaches to understand the
critical nodes of energy homeostasis and how
these pathways are up-regulated in response to
exercise training and disrupted in a number
of inactivity-related disorders (Hawley et al.
2014). The results of such research will hopeful-
ly catalyze the advent of personalized exercise
medicine by promoting health through
improvements in individualized exercise pre-
scription in combination with understanding
the behavioral aspects of exercise adherence,
which are the scope of this review. At present,
the translation of our basic knowledge about
exercise training–induced increases in mito-
chondrial biogenesis into improving the meta-
bolic health of the general population has been
mediocre, at best. Indeed, genetic and pharma-
cological manipulations of mitochondrial con-
tent or function have yielded conflicting results

in muscle metabolic health, which remains a
challenge to reconcile with the role of mito-
chondria in exercise-induced improvements in
muscle fitness (see Hawley et al. 2014; Neufer
et al. 2015). As such, this review extends
previous challenges to the scientific community
to bolster the translation of such knowledge
to counter the epidemic of chronic inactivity–
related diseases (Hawley et al. 2014; Neufer et al.
2015; Zierath and Wallberg-Henriksson 2015).

ACKNOWLEDGMENTS

The authors declare no conflict of interest.
The writing of this review is supported, in
part, by a Novo Nordisk Challenge Grant
NNF14OC0011493 (to J.A.H.). Because of re-
strictions on the number of references, we have
been unable to include important work by some
of our peers, for which we apologize in advance.

REFERENCES

Akimoto T, Ribar TJ, Williams RS, Yan Z. 2004. Skeletal
muscle adaptation in response to voluntary running in
Ca2þ/calmodulin-dependent protein kinase IV-deficient
mice. Am J Physiol Cell Physiol 287: C1311–C1319.

Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg
PB, Williams RS, Yan Z. 2005. Exercise stimulates Pgc-1a
transcription in skeletal muscle through activation of the
p38 MAPK pathway. J Biol Chem 280: 19587–19593.

Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen
M, Kelly DP, Holloszy JO. 2002. Adaptations of skeletal
muscle to exercise: Rapid increase in the transcriptional
coactivator PGC-1. FASEB J 16: 1879–1886.

Ballmann C, Tang Y, Bush Z, Rowe GC. 2016. Adult expres-
sion of PGC-1a and -1b in skeletal muscle is not required
for endurance exercise-induced enhancement of exercise
capacity. Am J Physiol Endocrinol Metab 311: E928–E938.

Bartlett JD, Close GL, Drust B, Morton JP. 2014. The emerg-
ing role of p53 in exercise metabolism. Sports Med 44:
303–309.

Booth FW, Narahara KA. 1974. Vastus lateralis cytochrome
oxidase activity and its relationship to maximal oxygen
consumption in man. Pflugers Arch 349: 319–324.

Booth FW, Neufer PD. 2006. Exercise genomics and prote-
omics. In ACSM’s advanced exercise physiology (ed. Tip-
ton CM), pp. 623–651. Lippincott, Williams & Wilkins
Baltimore.

Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell
SN, Gibala MJ. 2005. Six sessions of sprint interval
training increases muscle oxidative potential and cycle
endurance capacity in humans. J Appl Physiol (1985)
98: 1985–1990.

Exercise Training–Induced Mitochondrial Biogenesis

Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686 83

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165


Calvo JA, Daniels TG, Wang X, Paul A, Lin J, Spiegelman
BM, Stevenson SC, Rangwala SM. 2008. Muscle-specific
expression of PPARg coactivator-1a improves exercise
performance and increases peak oxygen uptake. J Appl
Physiol (1985) 104: 1304–1312.

Cartoni R, Leger B, Hock MB, Praz M, Crettenand A, Pich S,
Ziltener JL, Luthi F, Deriaz O, Zorzano A, et al. 2005.
Mitofusins 1/2 and ERRa expression are increased in
human skeletal muscle after physical exercise. J Physiol
567: 349–358.

Chau CM, Evans MJ, Scarpulla RC. 1992. Nuclear respira-
tory factor 1 activation sites in genes encoding the g-
subunit of ATP synthase, eukaryotic initiation factor
2a, and tyrosine aminotransferase. Specific interaction
of purified NRF-1 with multiple target genes. J Biol
Chem 267: 6999–7006.

Chen ZP, Stephens TJ, Murthy S, Canny BJ, Hargreaves M,
Witters LA, Kemp BE, McConell GK. 2003. Effect of
exercise intensity on skeletal muscle AMPK signaling in
humans. Diabetes 52: 2205–2212.

Chin ER. 2005. Role of Ca2þ/calmodulin-dependent
kinases in skeletal muscle plasticity. J Appl Physiol
(1985) 99: 414–423.

Cochran AJ, Percival ME, Tricarico S, Little JP, Cermak N,
Gillen JB, Tarnopolsky MA, Gibala MJ. 2014. Intermit-
tent and continuous high-intensity exercise training
induce similar acute but different chronic muscle adap-
tations. Exp Physiol 99: 782–791.

De Filippis E, Alvarez G, Berria R, Cusi K, Everman S, Meyer
C, Mandarino LJ. 2008. Insulin-resistant muscle is exer-
cise resistant: Evidence for reduced response of nuclear-
encoded mitochondrial genes to exercise. Am J Physiol
Endocrinol Metab 294: E607–E614.

Dudley GA, Abraham WM, Terjung RL. 1982. Influence of
exercise intensity and duration on biochemical adapta-
tions in skeletal muscle. J Appl Physiol 53: 844–850.

Dudley GA, Tullson PC, Terjung RL. 1987. Influence of
mitochondrial content on the sensitivity of respiratory
control. J Biol Chem 262: 9109–9114.

Edgett BA, Foster WS, Hankinson PB, Simpson CA, Little JP,
Graham RB, Gurd BJ. 2013. Dissociation of increases in
PGC-1a and its regulators from exercise intensity and
muscle activation following acute exercise. PLoS ONE
8: e71623.

Egan B, Carson BP, Garcia-Roves PM, Chibalin AV, Sarsfield
FM, Barron N, McCaffrey N, Moyna NM, Zierath JR,
O’Gorman DJ. 2010. Exercise intensity-dependent regu-
lation of peroxisome proliferator-activated receptor co-
activator-1 mRNA abundance is associated with differ-
ential activation of upstream signalling kinases in human
skeletal muscle. J Physiol 588: 1779–1790.

Egan B, O’Connor PL, Zierath JR, O’Gorman DJ. 2013.
Time course analysis reveals gene-specific transcript
and protein kinetics of adaptation to short-term aerobic
exercise training in human skeletal muscle. PLoS ONE 8:
e74098.

Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin J,
Jaeger S, Erdjument-Bromage H, Tempst P, Spiegelman
BM. 2004. Suppression of mitochondrial respiration
through recruitment of p160 myb binding protein to
PGC-1a: Modulation by p38 MAPK. Genes Dev 18:
278–289.

Fentz J, Kjobsted R, Kristensen CM, Hingst JR, Birk JB,
Gudiksen A, Foretz M, Schjerling P, Viollet B, Pilegaard
H, et al. 2015. AMPKa is essential for acute exercise-
induced gene responses but not for exercise training-in-
duced adaptations in mouse skeletal muscle. Am J Physiol
Endocrinol Metab 309: E900–E914.

Frier BC, Hancock CR, Little JP, Fillmore N, Bliss TA, Thom-
son DM, Wan Z, Wright DC. 2011. Reductions in RIP140
are not required for exercise- and AICAR-mediated in-
creases in skeletal muscle mitochondrial content. J Appl
Physiol (1985) 111: 688–695.

Garcia-Roves PM, Huss J, Holloszy JO. 2006. Role of calci-
neurin in exercise-induced mitochondrial biogenesis.
Am J Physiol Endocrinol Metab 290: E1172–E1179.

Gilde AJ, Van Bilsen M. 2003. Peroxisome proliferator-acti-
vated receptors (PPARS): Regulators of gene expression
in heart and skeletal muscle. Acta Physiol Scand 178:
425–434.

Gollnick PD, King DW. 1969. Effect of exercise and training
on mitochondria of rat skeletal muscle. Am J Physiol 216:
1502–1509.

Gollnick PD, Saltin B. 1982. Significance of skeletal muscle
oxidative enzyme enhancement with endurance training.
Clin Physiol 2: 1–12.

Gollnick PD, Armstrong RB, Saltin B, Saubert CWt, Sem-
browich WL, Shepherd RE. 1973. Effect of training on
enzyme activity and fiber composition of human skeletal
muscle. J Appl Physiol 34: 107–111.

Gomez-Cabrera MC, Salvador-Pascual A, Cabo H, Ferrando
B, Vina J. 2015. Redox modulation of mitochondriogen-
esis in exercise. Does antioxidant supplementation blunt
the benefits of exercise training? Free Radic Biol Med 86:
37–46.

Gordon JW, Rungi AA, Inagaki H, Hood DA. 2001. Effects
of contractile activity on mitochondrial transcription fac-
tor A expression in skeletal muscle. J Appl Physiol (1985)
90: 389–396.

Goto M, Terada S, Kato M, Katoh M, Yokozeki T, Tabata I,
Shimokawa T. 2000. cDNA cloning and mRNA analysis of
PGC-1 in epitrochlearis muscle in swimming-exercised
rats. Biochem Biophys Res Commun 274: 350–354.

Granata C, Oliveira RS, Little JP, Renner K, Bishop DJ. 2016.
Training intensity modulates changes in PGC-1a and
p53 protein content and mitochondrial respiration, but
not markers of mitochondrial content in human skeletal
muscle. FASEB J 30: 959–970.

Green HJ, Helyar R, Ball-Burnett M, Kowalchuk N, Symon
S, Farrance B. 1992. Metabolic adaptations to training
precede changes in muscle mitochondrial capacity.
J Appl Physiol 72: 484–491.

Gulick T, Cresci S, Caira T, Moore DD, Kelly DP. 1994. The
peroxisome proliferator-activated receptor regulates mi-
tochondrial fatty acid oxidative enzyme gene expression.
Proc Natl Acad Sci 91: 11012–11016.

Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. 2003.
An autoregulatory loop controls peroxisome prolifera-
tor-activated receptor g coactivator 1a expression in
muscle. Proc Natl Acad Sci 100: 7111–7116.

Hawley JA. 2002. Adaptations of skeletal muscle to pro-
longed, intense endurance training. Clin Exp Pharmacol
Physiol 29: 218–222.

C.G.R. Perry and J.A. Hawley

84 Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165


Hawley JA, Morton JP. 2014. Ramping up the signal: Pro-
moting endurance training adaptation in skeletal muscle
by nutritional manipulation. Clin Exp Pharmacol Physiol
41: 608–613.

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. 2014.
Integrative biology of exercise. Cell 159: 738–749.

Hellsten Y, Nielsen JJ, Lykkesfeldt J, Bruhn M, Silveira L,
Pilegaard H, Bangsbo J. 2007. Antioxidant supplementa-
tion enhances the exercise-induced increase in mito-
chondrial uncoupling protein 3 and endothelial nitric
oxide synthase mRNA content in human skeletal muscle.
Free Radic Biol Med 43: 353–361.

Hickson RC, Heusner WW, Van Huss WD. 1976. Skeletal
muscle enzyme alterations after sprint and endurance
training. J Appl Physiol 40: 868–871.

Holloszy JO. 1967. Biochemical adaptations in muscle:
Effects of exercise on mitochondrial oxygen uptake and
respiratory enzyme activity in skeletal muscle. J Biol
Chem 242: 2278–2282.

Holloszy JO, Booth FW. 1976. Biochemical adaptations
to endurance exercise in muscle. Annu Rev Physiol 38:
273–291.

Holloszy JO, Coyle EF. 1984. Adaptations of skeletal muscle
to endurance exercise and their metabolic consequences.
J Appl Physiol 56: 831–838.

Hood DA. 2001. Invited review: Contractile activity-in-
duced mitochondrial biogenesis in skeletal muscle.
J Appl Physiol (1985) 90: 1137–1157.

Hood DA, Zak R, Pette D. 1989. Chronic stimulation of rat
skeletal muscle induces coordinate increases in mito-
chondrial and nuclear mRNAs of cytochrome-c-oxidase
subunits. Eur J Biochem 179: 275–280.

Hood DA, Uguccioni G, Vainshtein A, D’Souza D. 2011.
Mechanisms of exercise-induced mitochondrial biogen-
esis in skeletal muscle: Implications for health and dis-
ease. Compr Physiol 1: 1119–1134.

Hood DA, Tryon LD, Carter HN, Kim Y, Chen CC. 2016.
Unravelling the mechanisms regulating muscle mito-
chondrial biogenesis. Biochem J 473: 2295–2314.

Hoppeler H, Luthi P, Claassen H, Weibel ER, Howald H. 1973.
The ultrastructure of the normal human skeletal muscle.
A morphometric analysis on untrained men, women and
well-trained orienteers. Pflugers Arch 344: 217–232.

Irrcher I, Walkinshaw DR, Sheehan TE, Hood DA. 2008. Thy-
roid hormone (T3) rapidly activates p38 and AMPK in
skeletal muscle in vivo. J Appl Physiol (1985) 104: 178–185.

Jager S, Handschin C, St-Pierre J, Spiegelman BM. 2007.
AMP-activated protein kinase (AMPK) action in skeletal
muscle via direct phosphorylation of PGC-1a. Proc Natl
Acad Sci 104: 12017–12022.

Jorgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB,
Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter
EA, et al. 2005. Effects of a-AMPK knockout on exercise-
induced gene activation in mouse skeletal muscle. FASEB
J 19: 1146–1148.

Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA. 2010. Bio-
genesis of the mitochondrial Tom40 channel in skeletal
muscle from aged animals and its adaptability to chronic
contractile activity. Am J Physiol Cell Physiol 298: C1308–
C1314.

Kelly DP, Scarpulla RC. 2004. Transcriptional regulatory
circuits controlling mitochondrial biogenesis and func-
tion. Genes Dev 18: 357–368.

Kiessling KH, Pilstrom L, Bylund AC, Saltin B, Piehl K. 1974.
Enzyme activities and morphometry in skeletal muscle of
middle-aged men after training. Scand J Clin Lab Invest
33: 63–69.

Kirkwood SP, Packer L, Brooks GA. 1987. Effects of endur-
ance training on a mitochondrial reticulum in limb skel-
etal muscle. Arch Biochem Biophys 255: 80–88.

Knutti D, Kressler D, Kralli A. 2001. Regulation of the tran-
scriptional coactivator PGC-1 via MAPK-sensitive inter-
action with a repressor. Proc Natl Acad Sci 98: 9713–9718.

Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm
GL, Yan Z, Newgard CB, Muoio DM. 2005. Peroxisome
proliferator-activated receptor-g co-activator 1a-medi-
ated metabolic remodeling of skeletal myocytes mimics
exercise training and reverses lipid-induced mitochon-
drial inefficiency. J Biol Chem 280: 33588–33598.

Kuhl JE, Ruderman NB, Musi N, Goodyear LJ, Patti ME,
Crunkhorn S, Dronamraju D, Thorell A, Nygren J,
Ljungkvist O, et al. 2006. Exercise training decreases the
concentration of malonyl-CoA and increases the expres-
sion and activity of malonyl-CoA decarboxylase in human
muscle. Am J Physiol Endocrinol Metab 290: E1296–E1303.

Lai RY, Ljubicic V, D’Souza D, Hood DA. 2010. Effect of
chronic contractile activity on mRNA stability in skeletal
muscle. Am J Physiol Cell Physiol 299: C155–C163.

Lawrie RA. 1953. The activity of the cytochrome system in
muscle and its relation to myoglobin. Biochem J 55: 298–
305.

Leick L, Wojtaszewski JF, Johansen ST, Kiilerich K, Comes G,
Hellsten Y, Hidalgo J, Pilegaard H. 2008. PGC-1a is not
mandatory for exercise- and training-induced adaptive
gene responses in mouse skeletal muscle. Am J Physiol
Endocrinol Metab 294: E463–E474.

Lelliott CJ, Medina-Gomez G, Petrovic N, Kis A, Feldmann
HM, Bjursell M, Parker N, Curtis K, Campbell M, Hu P,
et al. 2006. Ablation of PGC-1b results in defective mi-
tochondrial activity, thermogenesis, hepatic function,
and cardiac performance. PLoS Biol 4: e369.

Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM.
2002a. Peroxisome proliferator-activated receptor g

coactivator 1b (PGC-1b), a novel PGC-1-related tran-
scription coactivator associated with host cell factor.
J Biol Chem 277: 1645–1648.

Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O, Michael LF,
Puigserver P, Isotani E, Olson EN, et al. 2002b. Transcrip-
tional co-activator PGC-1a drives the formation of slow-
twitch muscle fibres. Nature 418: 797–801.

Lin J, Handschin C, Spiegelman BM. 2005. Metabolic con-
trol through the PGC-1 family of transcription coactiva-
tors. Cell Metab 1: 361–370.

Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ.
2010. Acute endurance exercise increases the nuclear
abundance of PGC-1a in trained human skeletal muscle.
Am J Physiol Regul Integr Comp Physiol 298: R912–R917.

MacDougall JD, Hicks AL, MacDonald JR, McKelvie RS,
Green HJ, Smith KM. 1998. Muscle performance and
enzymatic adaptations to sprint interval training. J Appl
Physiol (1985) 84: 2138–2142.

Exercise Training–Induced Mitochondrial Biogenesis

Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686 85

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165


MacInnis MJ, Gibala MJ. 2016. Physiological adaptations to
interval training and the role of exercise intensity. J Phys-
iol doi: 10.113/JP273196.

Martinez-Redondo V, Pettersson AT, Ruas JL. 2015. The
hitchhiker’s guide to PGC-1a isoform structure and
biological functions. Diabetologia 58: 1969–1977.

Mathai AS, Bonen A, Benton CR, Robinson DL, Graham
TE. 2008. Rapid exercise-induced changes in PGC-1a
mRNA and protein in human skeletal muscle. J Appl
Physiol (1985) 105: 1098–1105.

Matravadia S, Martino VB, Sinclair D, Mutch DM, Hollo-
way GP. 2013. Exercise training increases the expression
and nuclear localization of mRNA destabilizing proteins
in skeletal muscle. Am J Physiol Regul Integr Comp Physiol
305: R822–R831.

McConell GK, Lee-Young RS, Chen ZP, Stepto NK, Huynh
NN, Stephens TJ, Canny BJ, Kemp BE. 2005. Short-term
exercise training in humans reduces AMPK signalling
during prolonged exercise independent of muscle glyco-
gen. J Physiol 568: 665–676.

McGee SL, Hargreaves M. 2010. Histone modifications and
skeletal muscle metabolic gene expression. Clin Exp Phar-
macol Physiol 37: 392–396.

Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K,
Stewart A, Hart K, Schinner S, Sethi JK, Yeo G, et al. 2003.
Characterization of the human, mouse and rat PGC1b
(peroxisome-proliferator-activated receptor-g co-activa-
tor 1b) gene in vitro and in vivo. Biochem J 373: 155–165.

Morrison PR, Biggs RB, Booth FW. 1989. Daily running for
2 wk and mRNAs for cytochrome c and a-actin in rat
skeletal muscle. Am J Physiol 257: C936–C939.

Mortensen OH, Plomgaard P, Fischer CP, Hansen AK, Pile-
gaard H, Pedersen BK. 2007. PGC-1b is downregulated
by training in human skeletal muscle: No effect of train-
ing twice every second day vs. once daily on expression of
the PGC-1 family. J Appl Physiol (1985) 103: 1536–1542.

Neufer PD, Dohm GL. 1993. Exercise induces a transient
increase in transcription of the GLUT-4 gene in skeletal
muscle. Am J Physiol 265: C1597–C1603.

Neufer PD, Bamman MM, Muoio DM, Bouchard C,
Cooper DM, Goodpaster BH, Booth FW, Kohrt WM,
Gerszten RE, Mattson MP, et al. 2015. Understanding
the cellular and molecular mechanisms of physical activ-
ity-induced health benefits. Cell Metab 22: 4–11.

Norrbom J, Sundberg CJ, Ameln H, Kraus WE, Jansson E,
Gustafsson T. 2004. PGC-1a mRNA expression is influ-
enced by metabolic perturbation in exercising human
skeletal muscle. J Appl Physiol (1985) 96: 189–194.

Ogata T, Yamasaki Y. 1997. Ultra-high-resolution scanning
electron microscopy of mitochondria and sarcoplasmic
reticulum arrangement in human red, white, and inter-
mediate muscle fibers. Anat Rec 248: 214–223.

Oscai LB, Holloszy JO. 1971. Biochemical adaptations in
muscle. II: Response of mitochondrial adenosine tri-
phosphatase, creatine phosphokinase, and adenylate ki-
nase activities in skeletal muscle to exercise. J Biol Chem
246: 6968–6972.

Parra J, Cadefau JA, Rodas G, Amigo N, Cusso R. 2000. The
distribution of rest periods affects performance and
adaptations of energy metabolism induced by high-in-
tensity training in human muscle. Acta Physiol Scand 169:
157–165.

Paul MH, Sperling E. 1952. Cyclophorase system. XXIII:
Correlation of cyclophorase activity and mitochondrial
density in striated muscle. Proc Soc Exp Biol Med 79: 352–
354.

Perry CG, Talanian JL, Heigenhauser GJ, Spriet LL. 2007.
The effects of training in hyperoxia vs. normoxia on skel-
etal muscle enzyme activities and exercise performance.
J Appl Physiol (1985) 102: 1022–1027.

Perry CGR, Heigenhauser GJF, Bonen A, Spriet LL. 2008.
High-intensity aerobic interval training increases fat and
carbohydrate metabolic capacities in human skeletal
muscle. Appl Physiol Nutr Metab 33: 1112–1123.

Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A,
Spriet LL. 2010. Repeated transient mRNA bursts precede
increases in transcriptional and mitochondrial proteins
during training in human skeletal muscle. J Physiol 588:
4795–4810.

Pilegaard H, Ordway GA, Saltin B, Neufer PD. 2000. Tran-
scriptional regulation of gene expression in human skel-
etal muscle during recovery from exercise. Am J Physiol
Endocrinol Metab 279: E806–E814.

Pilegaard H, Saltin B, Neufer PD. 2003. Exercise induces
transient transcriptional activation of the PGC-1a gene
in human skeletal muscle. J Physiol 546: 851–858.

Powers SK, Nelson WB, Hudson MB. 2011. Exercise-in-
duced oxidative stress in humans: Cause and conse-
quences. Free Radic Biol Med 51: 942–950.

Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegel-
man BM. 1998. A cold-inducible coactivator of nuclear
receptors linked to adaptive thermogenesis. Cell 92: 829–
839.

Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss
S, Mootha VK, Lowell BB, Spiegelman BM. 2001. Cyto-
kine stimulation of energy expenditure through p38
MAP kinase activation of PPARg coactivator-1. Mol
Cell 8: 971–982.

Rodas G, Ventura JL, Cadefau JA, Cusso R, Parra J. 2000. A
short training programme for the rapid improvement of
both aerobic and anaerobic metabolism. Eur J Appl Phys-
iol 82: 480–486.

Rose AJ, Hargreaves M. 2003. Exercise increases Ca2þ-cal-
modulin-dependent protein kinase II activity in human
skeletal muscle. J Physiol 553: 303–309.

Rose AJ, Frosig C, Kiens B, Wojtaszewski JF, Richter EA. 2007.
Effect of endurance exercise training on Ca2þ calmodulin-
dependent protein kinase II expression and signalling in
skeletal muscle of humans. J Physiol 583: 785–795.

Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand
A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP,
et al. 2003. Endurance training in humans leads to fiber
type-specific increases in levels of peroxisome prolifera-
tor-activated receptor-g coactivator-1 and peroxisome
proliferator-activated receptor-a in skeletal muscle. Dia-
betes 52: 2874–2881.

Russell AP, Hesselink MK, Lo SK, Schrauwen P. 2005. Reg-
ulation of metabolic transcriptional co-activators and
transcription factors with acute exercise. FASEB J 19:
986–988.

Safdar A, Little JP, Stokl AJ, Hettinga BP, Akhtar M, Tarno-
polsky MA. 2011. Exercise increases mitochondrial PGC-
1a content and promotes nuclear-mitochondrial cross-

C.G.R. Perry and J.A. Hawley

86 Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165


talk to coordinate mitochondrial biogenesis. J Biol Chem
286: 10605–10617.

Saleem A, Adhihetty PJ, Hood DA. 2009. Role of p53 in
mitochondrial biogenesis and apoptosis in skeletal mus-
cle. Physiol Genomics 37: 58–66.

Saleem A, Carter HN, Hood DA. 2014. p53 is necessary for
the adaptive changes in cellular milieu subsequent to an
acute bout of endurance exercise. Am J Physiol Cell Physiol
306: C241–C249.

Scarpulla RC. 2002. Nuclear activators and coactivators in
mammalian mitochondrial biogenesis. Biochim Biophys
Acta 1576: 1–14.

Scarpulla RC. 2006. Nuclear control of respiratory gene ex-
pression in mammalian cells. J Cell Biochem 97: 673–683.

Short KR, Vittone JL, Bigelow ML, Proctor DN, Rizza RA,
Coenen-Schimke JM, Nair KS. 2003. Impact of aerobic
exercise training on age-related changes in insulin sensi-
tivity and muscle oxidative capacity. Diabetes 52: 1888–
1896.

Sriwijitkamol A, Ivy JL, Christ-Roberts C, DeFronzo RA,
Mandarino LJ, Musi N. 2006. LKB1-AMPK signaling in
muscle from obese insulin-resistant Zucker rats and ef-
fects of training. Am J Physiol Endocrinol Metab 290:
E925–E932.

Steinberg GR, O’Neill HM, Dzamko NL, Galic S, Naim T,
Koopman R, Jorgensen SB, Honeyman J, Hewitt K, Chen
ZP, et al. 2010. Whole body deletion of AMP-activated
protein kinase b2 reduces muscle AMPK activity and
exercise capacity. J Biol Chem 285: 37198–37209.

Taylor EB, Hurst D, Greenwood LJ, Lamb JD, Cline TD,
Sudweeks SN, Winder WW. 2004. Endurance training
increases LKB1 and MO25 protein but not AMP-activat-
ed protein kinase activity in skeletal muscle. Am J Physiol
Endocrinol Metab 287: E1082–E1089.

Terada S, Goto M, Kato M, Kawanaka K, Shimokawa T,
Tabata I. 2002. Effects of low-intensity prolonged exercise
on PGC-1 mRNA expression in rat epitrochlearis muscle.
Biochem Biophys Res Commun 296: 350–354.

Vainshtein A, Tryon LD, Pauly M, Hood DA. 2015. Role of
PGC-1a during acute exercise-induced autophagy and
mitophagy in skeletal muscle. Am J Physiol Cell Physiol
308: C710–C719.

Varnauskas E, Bjorntorp P, Fahlen M, Prerovsky I, Stenberg
J. 1970. Effects of physical training on exercise blood flow
and enzymatic activity in skeletal muscle. Cardiovasc Res
4: 418–422.

Vega RB, Huss JM, Kelly DP. 2000. The coactivator PGC-1
cooperates with peroxisome proliferator-activated recep-
tora in transcriptional control of nuclear genes encoding
mitochondrial fatty acid oxidation enzymes. Mol Cell Biol
20: 1868–1876.

Wadley GD, Lee-Young RS, Canny BJ, Wasuntarawat C,
Chen ZP, Hargreaves M, Kemp BE, McConell GK. 2006.
Effect of exercise intensity and hypoxia on skeletal muscle
AMPK signaling and substrate metabolism in humans.
Am J Physiol Endocrinol Metab 290: E694–E702.

Watt MJ, Southgate RJ, Holmes AG, Febbraio MA. 2004.
Suppression of plasma free fatty acids upregulates perox-
isome proliferator-activated receptor (PPAR) a and d

and PPAR coactivator 1a in human skeletal muscle, but
not lipid regulatory genes. J Mol Endocrinol 33: 533–544.

White AT, Schenk S. 2012. NADþ/NADH and skeletal mus-
cle mitochondrial adaptations to exercise. Am J Physiol
Endocrinol Metab 303: E308–E321.

Williams RS, Neufer PD. 1996. Regulation of gene expres-
sion in skeletal muscle by contractile activity. In The
handbook of physiology, section 12, Exercise: Regulation
and integration of multiple systems (ed. Rowell LB,
Shepherd JT), pp. 1124–1150. Oxford University Press,
New York.

Williams RS, Salmons S, Newsholme EA, Kaufman RE, Mel-
lor J. 1986. Regulation of nuclear and mitochondrial gene
expression by contractile activity in skeletal muscle. J Biol
Chem 261: 376–380.

Winder WW, Holmes BF, Rubink DS, Jensen EB, Chen M,
Holloszy JO. 2000. Activation of AMP-activated protein
kinase increases mitochondrial enzymes in skeletal mus-
cle. J Appl Physiol (1985) 88: 2219–2226.

Wright DC. 2007. Mechanisms of calcium-induced mito-
chondrial biogenesis and GLUT4 synthesis. Appl Physiol
Nutr Metab 32: 840–845.

Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones
TE, Holloszy JO. 2007. Exercise-induced mitochondrial
biogenesis begins before the increase in muscle PGC-1a
expression. J Biol Chem 282: 194–199.

Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G,
Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, et al.
1999. Mechanisms controlling mitochondrial biogenesis
and respiration through the thermogenic coactivator
PGC-1. Cell 98: 115–124.

Wu H, Kanatous SB, Thurmond FA, Gallardo T, Isotani E,
Bassel-Duby R, Williams RS. 2002. Regulation of mito-
chondrial biogenesis in skeletal muscle by CaMK. Science
296: 349–352.

Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL,
Hawley JA. 2008. Skeletal muscle adaptation and perfor-
mance responses to once a day versus twice every second
day endurance training regimens. J Appl Physiol (1985)
105: 1462–1470.

Zierath JR, Wallberg-Henriksson H. 2015. Looking ahead
perspective: Where will the future of exercise biology take
us? Cell Metab 22: 25–30.

Exercise Training–Induced Mitochondrial Biogenesis

Cite this article as Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a029686 87

This is a free sample of content from The Biology of Exercise. 
Click here for more information on how to buy the book.

© 2017 by Cold Spring Harbor Laboratory Press. All rights reserved.

http://cshlpress.com/default.tpl?action=full&src=pdf&--eqskudatarq=1165

