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The patterns and processes of influenza virus evolution are of fundamental importance,
underpinning such traits as the propensity to emerge in new host species and the ability to
rapidly generate antigenic variation. Herein, we review key aspects of the ecology and evo-
lution of influenza viruses. We begin with an exploration of the origins of influenza viruses
within the orthomyxoviruses, showing how our perception of the evolutionary history of these
viruses has been transformed with metagenomic sequencing. We then outline the diversity of
virus subtypes in different species and the processes by which these viruses have emerged in
new hosts, with a particular focus on the role played by segment reassortment. We then turn
our attention to documenting the spread and phylodynamics of seasonal influenza A and B
viruses in human populations, including the drivers of antigenic evolution, and finish with a
discussion of virus diversity and evolution at the scale of individual hosts.

rom an evolutionary perspective, more is

known and more sequence data have been
generated about influenza viruses than arguably
any other group of pathogens. These data have
provided a general understanding of the extent
and structure of virus genetic diversity, the evo-
lutionary processes that gave rise to it, from
where influenza viruses originate, and the mu-
tations that underpin host adaptation, antigenic
drift, and antiviral resistance. We also know
much about how human influenza viruses spread
and evolve on a seasonal basis. Human influenza
A virus was the focus of one the first large-scale
pathogen genome-sequencing projects (Ghedin
et al. 2005), and influenza virus genomes are
regularly used to test methods of evolutionary
analysis, and these evolutionary analyses are in-
creasingly employed to understand antigenic

drift and help choose vaccine strains (Smith
et al. 2004; Koel et al. 2013; Bedford et al. 2014;
Neher et al. 2016).

Herein, we review key aspects of the ecology
and evolution of influenza virus, taking a strong
genomic perspective. We will consider the evo-
lutionary behavior of the virus in different host
species and the commonalities among them
and highlight areas where uncertainty remains.

PHYLOGENETIC DIVERSITY AND ORIGINS
OF INFLUENZA VIRUSES

The Origins of Influenza Viruses

The reservoirs of influenza A viruses are tradi-
tionally considered to be waterbirds of the or-
ders Anseriformes (ducks) and Charadriiformes
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(shorebirds, gulls); these animals are commonly
infected, reaching prevalence levels of >20% in
the autumn migration season (Latorre-Margalef
et al. 2014), harbor 16 hemagglutinin (HA) and
nine neuraminidase (NA) subtypes, and usually
experience clinically asymptomatic infections.
Occasionally, influenza A virus leaves these
aquatic bird reservoirs, overcomes a variety of
host barriers (Kuiken et al. 2006), and jumps to
either poultry or various mammalian species,
including humans, resulting in sporadic infec-
tions, disease epidemics, or pandemics. Al-
though the interplay between the birds and
mammals is critical for understanding the emer-
gence of influenza A virus, our knowledge of
influenza ecology and evolution in general has
changed dramatically with the recent advent of
metagenomic sequencing.

The first indication that the phylogenetic
diversity of influenza A viruses was greater
than in the bird-mammal 16HA-9NA model
was the discovery of highly divergent and di-
verse viruses in fruit bats (Artibeus spp.) from
Central and South America (Tong et al. 2012,
2013). These bat viruses represented unique
subtypes, H17N10 and H18N11, and possessed
some internal genes with more genetic diversity
among them than between all other known avi-
an and mammalian influenza viruses combined
(Tong et al. 2013). These features are indicative
of along evolutionary association between these
viruses and their bat hosts, as well as an ancient
separation from the viral lineages found in birds
and other mammals. Although it has been sug-
gested that bat influenza A viruses possess the
biological features necessary to infect humans,
including the use of major histocompatibility
complex (MHC)-II as an entry mediator (Kar-
akus etal. 2019), these viruses may only replicate
poorly in some mammalian cell lines (Ciminski
et al. 2019).

The remaining puzzle is why so few bat in-
fluenza virus genome sequences have been iden-
tified, with the only other known bat virus, an
H9N2-like variant, recently identified in Egyp-
tian bats and not as divergent as those from
South America (Kandeil et al. 2019). The most
likely explanations are that we have not sampled
the right populations and that these viruses are

present at low prevalence and/or only establish
short-lived infections such that the chances of
detecting actively replicating viruses is slim. In-
deed, the large gap in the phylogenies that link
bat influenza viruses to those in other species is
indicative of a very limited sampling of virus
diversity. It is, therefore, inevitable that more
mammalian influenza viruses, including from
bats, will be identified in the future.

More surprises on the host range of influen-
za viruses arose from the large-scale metage-
nomic (particularly RNA) sequencing of diverse
vertebrate species. A large-scale metatranscrip-
tomic study of diverse vertebrate viruses revealed
that sequences clearly related to known influenza
viruses were present in amphibians, fish, and
even the hagfish (Eptatretus burgeri), a jawless
and basal vertebrate species (Shi et al. 2018b).
That these viruses were sampled from seemingly
healthy animals tentatively suggests that they
represent low-pathogenicity variants. Notably,
the (PB2) phylogeny of these viruses generally
matches that of the host species from which they
were sampled, albeit with obvious cases of host
jumping (Fig. 1). This pattern strongly suggests
that influenza viruses and their hosts have likely
coevolved for the entire evolutionary history of
vertebrates. If so, then many more influenza vi-
ruses will ultimately be identified from diverse
vertebrates. Hence, although wild waterbirds are
rightly considered the ultimate source of those
influenza A viruses that eventually emerge in hu-
mans, they are only milestones in a far older
evolutionary history. Host jumping, which un-
derpins disease emergence, occurs on this back-
bone of ancient virus-host codivergence. Of par-
ticular note here is that the closest relative of
human influenza B virus identified to date is
from a fish (Mastacembelus aculeatus), again
suggesting that a diverse array of influenza B-
like viruses will eventually be found in other ver-
tebrate species (Shi et al. 2018b).

Metagenomics and the Orthomyxoviruses

Metagenomic studies have been central to re-
vealing the relationships between the influenza
viruses and related orthomyxoviruses (family
Orthomyxoviridae). Orthomyxoviruses appear
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to be relatively common in fish in which they
harbor enormous phylogenetic diversity, again
indicative of ancient origins (Fig. 1; Shi et al.
2018b). A good example is infectious salmon
anemia virus (now Salmon isavirus) that has
been known to cause disease in farmed Atlantic
salmon for >30 years (Rimstad and Mjaaland
2002). More recently, an even more divergent
orthomyxovirus (Tilapia lake virus) responsible
for large-scale die-offs of tilapia (Oreochromis
sp.) was identified (Bacharach et al. 2016).
Perhaps more surprising was the discovery
that orthomyxoviruses (and RNA viruses in
general) are abundant in invertebrates, including
mosquitoes, earwigs, earthworms, cockroaches,
and a variety of fly species (Fig. 1; Li et al. 2015;
Shi et al. 2016). Although there have been mul-
tiple and complex cross-species transmission
events throughout orthomyxovirus evolution,
visible as vertebrate-associated viruses falling
in different phylogenetic locations within the
diversity of invertebrate viruses, the data sug-
gests that the orthomyxoviruses originated in
invertebrates and have been associated with an-
imals for perhaps the entire history of the
Metazoa. This marks a major transition in our
understanding of the orthomyxoviruses, from
predominantly a family of vertebrate viruses
to a largely invertebrate family with multiple
jumps to vertebrates, including those that
gave rise to the influenza viruses and in which
respiratory transmission evolved in some mam-
malian species. Despite this antiquity, all
orthomyxoviruses, irrespective of host, share a
segmented genome structure, although segment
numbers vary from 6 to 10 (Shi et al. 2016).

The Timescale of Influenza Virus Evolution

One of the most complex topics in influenza
virus evolution has been revealing the timescale
over which its genetic diversity has been created,
particularly those influenza A viruses that infect
humans. As discussed above, metagenomic
studies strongly suggest that influenza viruses
have existed for hundreds of millions of years
(Shi et al. 2018b), and it seems reasonable to
assume that Anseriformes and Charadriiformes
have similarly been infected for millennia. Such

antiquity is also supported by the observation
that the HA and NA comprise highly divergent
sequences that are difficult to align. The same
pattern of high divergence, and hence deep an-
tiquity, is also true of the A and B alleles (the
latter only found in birds) of the virus nonstruc-
tural (NS) segment.

A very different timescale emerges with
the molecular clock dating of influenza A viruses
sampled from birds and mammals (excluding
bats). As expected, given its high background
mutation rate (Sanjuan and Domingo-Calap
2016), evolutionary rates are universally high in
influenza viruses at ~10~> nucleotide substitu-
tions per site per year (Chen and Holmes 2006;
Rambaut et al. 2008; Worobey et al. 2014a;
Vijaykrishna et al. 2015), although there is vari-
ation among viruses, hosts species, genome seg-
ments, and subtypes of influenza A virus. In the
case of influenza A virus, these rates suggest that
circulating genetic diversity has a very recent or-
igin, only dating to the nineteenth century. In-
deed, it has been proposed that that there was a
large-scale “selective sweep” (i.e., the selective
fixation of an advantageous mutation that
purged existing genetic diversity) of influenza
genomes that occurred in the late 1800s, such
that all currently circulating avian and mamma-
lian influenza A virus lineages originated at this
point (Worobey et al. 2014a). A complicating
factor is that viruses evolve at different rates in
different hosts (Worobey et al. 2014a), with poul-
try viruses evolving more rapidly than those in
wild birds (Fourment and Holmes 2015). How-
ever, even accounting for such variation, all esti-
mates for the divergence times of avian and
mammal viruses are recent, generally falling in
the nineteenth century. Either these dates are real
and virus evolution has been characterized by a
complex series of cross-species transmission
events and selective sweeps (Chen and Holmes
2010; Worobey et al. 2014a) or they are wildly
erroneous and the timescale of virus evolution is
uncertain. Likely the best way to resolve this key
question is through the analysis of “ancient” influ-
enza viruses sampled from earlier time points. At
the time of writing, however, the only available
samples of this kind are those of the HIN1 pan-
demic of 1918/1919 (Taubenberger et al. 1997).
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There has similarly been debate over the
timing and nature of the HIN1 virus associated
with the global pandemic of 1918/1919. The
key issue here is how long the virus was present
in humans before the 1918 pandemic began
(Reid and Taubenberger 2003). Despite the
availability of samples from the pandemic (Tau-
benberger et al. 1997, 2005), it is difficult to
determine which of the various scenarios for
the origin of the 1918 virus are correct: that
the entire virus, or at least some of its segments,
originated in birds shortly before the epidemic
began, that it emerged earlier in pigs before
crossing to humans (Smith et al. 2009a), or
that it emerged earlier in humans and evolved
increased virulence through time (Worobey
et al. 2014b). Again, more ancient samples will
be critical to answering this question.

CROSS-SPECIES TRANSMISSION AND
EVOLUTION OF INFLUENZAVIRUSES IN
MULTIPLE HOSTS

Like many RNA viruses, influenza viruses regu-
larly jump host species. Although many of these
cross-species transmission events only result in
transient spillover infections, occasionally they
result in sustained epidemic transmission. The
phylogenetic distance between hosts appears to
be an important general predictor of the evolu-
tionary success of cross-species transmission
events (Longdon et al. 2014). Hence, the most
common cross-species transmission events oc-
cur within a specific host class, particularly
within the Aves, and more so within different
waterfowl of the genus Anas (Ren et al. 2016).
There is also strong evidence for the cross-
species transmission of influenza A viruses be-
tween humans and swine, although the role
played by pigs in human pandemics prior to
2009 is unclear (Nelson and Worobey 2018),
and reverse zoonoses from humans to pigs likely
occur at a higher rate than virus transmission
from pigs to humans (Nelson et al. 2012; Nelson
and Vincent 2015). Interestingly, however,
swine (and bovines) are key hosts for influenza
D virus, first detected in 2011 (Hause et al. 2013).

Cross-species transmission is best docu-
mented in wild birds. These animals can be en-

Ecology and Evolution of Influenza Viruses

visaged as being infected by a single and
common pool of influenza viruses, where geo-
graphical subdivision may play a more impor-
tant role than host species in shaping virus
population structure. The most striking pattern
here is that influenza A viruses from wild birds
fall into independently evolving Eurasian and
North American lineages, regardless of subtype
(Fig. 2; Donis et al. 1989). It is possible that these
geographically segregated lineages are some-
times antigenically different, offering a compet-
itive advantage to lineages/viruses introduced
into the mismatched host population (Bahl
et al. 2009; Vijaykrishna et al. 2013). More con-
troversial is how avian influenza viruses are
structured within the continental scale, and the
precise role played by “flyways” or the specific
migratory routes used by birds. Despite some
counter suggestions (Bahl et al. 2013), there is
relatively strong evidence that influenza A virus-
es in North American birds tend to spread in
patterns that loosely respect the geographical
boundaries imposed by avian flyway (Lam
et al. 2012; Fourment et al. 2017).

It is also apparent that subtypes of influenza
A virus differ in the specificity or generality of
the hosts they infect. For example, H13 and H16
have, to date, almost exclusively been detected in
gulls, whereas more generalist subtypes like H3
can be detected in numerous wild bird species,
poultry, humans, pigs, horses, and dogs. Host
specificity appears to be dictated by a number
of factors, including cellular receptors, pH, and
temperature. The successful emergence of virus-
es in new host species likely involves adaptive
evolution to overcome these intrinsic barriers,
although in some cases this process may be bio-
logically subtle (Feng et al. 2015). Experimental
studies, in which avian influenza H5N1 virus
was serially passaged in ferrets, greatly illumi-
nated the mutation types needed for cross-spe-
cies transmission from birds to mammals
(Herfst et al. 2012; Imai et al. 2012; Linster
et al. 2014). With respect to sustained (and air-
borne) transmission in mammals, key muta-
tions were associated with changing receptor
specificity from avian-type (02,3) to mammali-
an-type (02,6) receptors, increased thermosta-
bility and pH stability, increased replication of
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viruses at temperatures in the mammalian respi-
ratory tract, and modified polymerase activity to
increase transcription.

Importantly, not all host-jumping events
are successful, and the evolution of stable tran-
sition transmission cycles in new hosts likely
depends as much on host ecology as the acqui-
sition of genetic changes that enable productive
replication. Canine influenza A virus provides a
useful illustration. This virus has emerged twice
in dogs: once with horses the reservoir species
(H3NS8; Crawford et al. 2005) and another when
the viruses were derived from avian hosts
(H3N2) (Parrish et al. 2015). Although in both
cases the virus was able to establish local trans-
mission chains, particularly in dog shelters in
the United States, these chains eventually died
out, and the H3N8 virus went extinct in dogs.
Although the avian-derived H3N2 outbreak is
ongoing, there has been continual local fade-
out in the United States, and this epizootic
may also ultimately suffer extinction (Voorhees
et al. 2018). Because canine influenza A virus
seems well-adapted to replicate in dogs (Feng
et al. 2015), the most likely explanation for the
high extinction rate is that there is an insufficient
density of susceptible hosts in many localities to
sustain host-to-host transmission (Dalziel et al.
2014).

REASSORTMENT AND INFLUENZA VIRUS
EVOLUTION

Genomic reassortment is central to the biology
of influenza viruses and occurs frequently in all
hosts studied (Steel and Lowen 2014; Lowen
2017, 2018). The consequence of reassortment
is that, following coinfection, viral progeny con-
tains various gene segment combinations from
the different parental viruses. Reassortment is of
evolutionary importance because it creates new
genomic constellations: Although the majority
of these will be deleterious (as most single mu-
tations are deleterious), some may facilitate ad-
aptation to new hosts, help evade host immune
responses, and assist in the generation of antivi-
ral resistance.

Reassortment rate is shaped by a number of
factors, including the extent of viral diversity in

Ecology and Evolution of Influenza Viruses

the host population. For example, reassortment
may be most frequent in the Anseriformes as
these harbor the largest number of subtypes
(Lu et al. 2014). In addition, reassortment is
not random, because segmental mismatch en-
sures that only some genomic constellations are
viable. Indeed, segment mismatch, which en-
compasses both RNA- and protein-based in-
compatibilities between coinfecting viruses, is
an important determining factor of the out-
comes of mixed influenza A virus infections
(White and Lowen 2018). For example, packag-
ing signals may restrict or bias reassortment,
decreasing the efficiency with which reassortant
genotypes form (Essere et al. 2013). Similarly,
there is a complex network of RNA-RNA inter-
actions among segments that impacts the fitness
of reassortant progeny (Dadonaite et al. 2019).
Examples of protein incompatibility include the
HA avidity/NA activity imbalance that occurs
because the HA mediates attachment, whereas
the NA facilitates release of virions, making
these proteins functionally interdependent (Ka-
verin et al. 1998; Mitnaul et al. 2000). This may,
in part, explain why only 117/144 possible HA/
NA subtype combinations have been observed
in wild birds (Olsen et al. 2006).

Reassortment in Avian Influenza A Virus

As wild birds support a large diversity of avian
influenza subtypes and lineages, with both in-
fection and reinfection commonplace, it is no
surprise that influenza viruses from wild birds
experience frequent reassortment. For example,
Dugan et al. (2008) showed that 26% of 167 wild
bird samples carried more than one HA/NA
subtype, and that four different genotypes
were present in five H4N6 isolates collected
from mallards (Anas playrhynchos) at the
same location on the same day. Similarly, of 96
virus genomes from mallards isolated in 2011,
56% were reassortants (Wille et al. 2013), and
using a natural experimental system it was dem-
onstrated that 10 individual sentinel mallards
were infected with at least three different sub-
types within an autumn season, with 15 HA/NA
subtype combinations (Tolf et al. 2013; Wille
et al. 2013, 2017). Reassortment in the wild
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bird reservoir is most easily observed when the
viruses comprise a mosaic of Eurasian and
North American origin gene segments, and are
most often detected in gulls and seabirds that
move across continental margins (Fig. 3; Ramey
et al. 2010; Wille et al. 2011; Lang et al. 2016).

Reassortment is central to the emergence of
highly pathogenic avian influenza viruses in
poultry. For example, the emergence of H5Nx
and H7N9 viruses are closely tied to reassort-
ment, such that the internal genes of HON2 vi-
ruses reassorted with different HA/NA subtypes
to generate both the gs/GD lineage H5N1 virus-
es and contemporary H7N9 viruses (Fig. 3). The
H7N9 virus that emerged in China in 2013 re-
sulted from numerous reassortment events, with
the six internal protein genes derived from at
least two separate HON2 virus lineages, H7
and N9 gene segments of wild bird origin (Gao
et al. 2013; Lam et al. 2013; Wu et al. 2013; Pu
et al. 2015; Wang et al. 2016). Since emergence,
and across all seasonal waves, the H7N9 virus
has experienced high rates of reassortment, gen-
erating multiple genome constellations. For ex-
ample, Cui et al. (2014) documented 27 H7N9
genotypes within 3 months of emergence. This
high reassortment rate is likely a result of the
very high diversity of avian influenza A virus
circulating in poultry markets and farms (Shi
et al. 2018a), and it is not surprising that there
has been reassortment among H5N6, H6NG,
and H7N9 viruses (Wu et al. 2013; Jin et al.
2017).

Reassortment of Swine Influenza Viruses

The evolutionary genetics of swine influenza vi-
ruses are complex; this is the result of numerous
cross-species transmissions, introductions, and
reassortment events occurring independently in
different continents (Vincent et al. 2008; Brock-
well-Staats et al. 2009; Steel and Lowen 2014).
For example, in North America, one major virus
lineage of influenza A virus, denoted the classi-
cal swine lineage, was introduced into pigs from
humans during the 1918 pandemic where it was
stably transmitted for ~70 years (Brockwell-
Staats et al. 2009). There was evidence for the
cocirculation of H3N2 human viruses in pigs,

and a double reassortant swine/human geno-
type virus and a triple reassortant swine/hu-
man/avian virus emerged shortly after (Fig. 3;
Zhou et al. 1999; Karasin et al. 2000b). The triple
reassortant was rapidly established in North
American pigs (Webby et al. 2000) and was
subject to further reassortment such that nu-
merous lineages now exist, each carrying the
internal genes of the established triple reassor-
tant virus (Karasin et al. 2000a, 2006; Webby
et al. 2000, 2004; Vincent et al. 2008). Because
of the highly reassorted nature of influenza A
viruses in swine populations, there is great con-
cern that some of these viruses may have pan-
demic potential (Ito et al. 1998). However, with
the exception of the 2009 HIN1 human pan-
demic, there is no concrete evidence that swine
played a role in the 1918, 1957, and 1968 human
pandemics (Nelson and Worobey 2018).

Reassortment of Human Influenza Viruses

Reassortment has undoubtedly played a starring
role in the emergence of human influenza A
viruses, although the lack of contemporary vi-
ruses from other animal species complicates
analysis. For example, the H2N2 pandemic virus
that emerged in 1957 was a reassortant between
previously circulating human and avian viruses
with the novel H2, N2, and PB1 genes acquired
from the Eurasian avian reservoir (Smith et al.
2009a). Similarly, the H3N2 virus that emerged
in 1968 was a reassortant between H2N2/1957
virus and an influenza virus with novel HA and
PB1 acquired from the avian reservoir. Finally,
the HIN1pdm09 virus was the result of complex
and numerous reassortment events: the PBI,
PB2, PA, HA, NP, and NS segments were ac-
quired from the North American swine triple-
reassortant viruses described above, whereas the
NA and M segments had their origin in the
Eurasian avian-like swine HIN1 lineage (Garten
et al. 2009; Smith et al. 2009b).

Reassortment also occurs in seasonal influ-
enza viruses, both within and among subtypes.
Despite the cocirculation of HIN1 and H3N2
viruses since 1977, inter-subtype reassortment
occurs infrequently, which is likely a result of the
lower fitness of reassortants compared to the
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Figure 3. Reassortment and emergence of influenza viruses. Within the wild bird reservoir, reassortment is most
recognizable when viruses contain gene segments with a mosaic of geographic lineages (see Fig. 2). These
intercontinental reassortants are most often of the H13/H16 subtype and found in gull species (Wille et al.
2011). Reassortment in birds can cross host species barriers, such as the H7N9 viruses in China that involve
viruses isolated in wild birds, domestic ducks, and poultry. According to the model proposed by Wang et al.
(2014), an H7Nx virus from a domestic duck reassorted with an HxN9 from a wild bird. This H7N9 virus, once
introduced to poultry, reassorted with an HON2. More recent literature suggests this virus has segments from
more than one HIN?2 lineage, suggesting additional reassortment events. Following the emergence of this virus in
poultry, it continued to reassort, continually producing new genotypes. Cross-species reassortment may also
involve mammals. North American triple reassortant viruses in swine populations emerged following a number
of reassortment events; segments have been traced back to classical swine lineages, and human seasonal viruses
as well as North American avian viruses.
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parental wild-type viruses (Phipps et al. 2017).
However, important examples include the ap-
pearance of HIN2 viruses detected sporadically
in humans (Guo et al. 1992; Xu et al. 2002; Ellis
et al. 2003; Al Faress et al. 2008). In contrast,
intra-subtype reassortment occurs frequently
(Holmes et al. 2005; Nelson et al. 2008; Rambaut
et al. 2008; Westgeest et al. 2014; Berry et al.
2016) and likely far more so than detected
through phylogenetic analysis as it may involve
parental lineages that are difficult to distinguish
on evolutionary trees and/or the inclusion of
internal gene segments often not included in
analyses.

THE MOLECULAR EPIDEMIOLOGY OF
HUMAN INFLUENZA VIRUS

Influenza virus is a hugely successful global
pathogen that causes epidemics of varying mag-
nitude every winter season in the temperate
parts of both the northern and southern hemi-
spheres, with rather more continual circulation
in the tropics (Viboud et al. 2006). Influenza A
and B viruses therefore spread globally each
year, although in a complex and unpredictable
manner, with multiple introductions (and con-
sequent cocirculation) into individual geo-
graphic regions, often undergoing antigenic
drift during the process (Nelson et al. 2007,
2008; Bedford et al. 2015). Despite the apparent
regularity of influenza, considerable uncertainty
remains over the patterns and drivers of virus
spread and of the possible existence and location
of a global “source” population.

Avariety of models have been put forward to
explain the global spread of influenza virus,
largely based on the phylogenetic analysis of
genome sequence data. Most attention has
been directed toward H3N2 influenza A viruses,
with influenza A/HIN1 and B viruses exhibiting
less frequent global movement (Bedford et al.
2015). A common idea is that both seasonal
and antigenically distinct variants of influenza
A virus regularly appear in East and Southeast
Asia (including mainland China) from where
they spread globally (Smith et al. 2004). Al-
though both genomic and prevalence data
should be interpreted with caution because of

major sampling biases, this theory is compatible
with the number, density, and movement of
people that live in this region that together fa-
cilitate virus transmission and evolution. In-
deed, expansive HA phylogenies have shown
that viruses from East and Southeast Asia tend
to fall toward the central trunk of the phylogeny
as expected from a source population (Lemey
et al. 2014). However, other phylogeographic
studies have suggested that regions like southern
China may not be global sources (Cheng et al.
2013), such that the phylogenetic data may bet-
ter fit a “shifting metapopulation” in which vi-
ruses can emerge in any geographic region (e.g.,
Asia, Europe, North America), with the location
of the source population regularly changing
(Bahl et al. 2011).

The distinctive seasonality of influenza vi-
ruses complicates analyses of global scale mo-
lecular epidemiology. Although influenza is
largely a winter disease in the temperate regions
of both the northern and southern hemispheres,
tropical regions are characterized by more con-
tinual virus transmission, sometimes with mul-
tiple peaks during the year (Viboud et al. 2006).
For example, whereas there is a single seasonal
peak of influenza in northern China, there are
often a major and minor peak in southern China
(Cheng et al. 2013). Similarly, the tropical re-
gions of northern Australia typically have longer
influenza seasons than the more temperate re-
gions in the south of the country, despite a far
smaller population density in the north (Geo-
ghegan et al. 2018). Hence, influenza seasonality
likely reflects a complex interplay between tem-
perature, humidity, and mode of transmission.
These factors, combined with increasingly fre-
quent global transport (Brockmann and Hel-
bing 2013), ensure that influenza viruses can
appear in any locality at any time, and whether
they lead to outbreaks depends on the local com-
bination of climatic and epidemiological factors.

The Phylodynamics of Influenza Virus

The array of influenza viruses that circulate in
human populations differ in their evolutionary
behavior (Bedford et al. 2014). These differences
are reflected in so-called “phylodynamic” pat-
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terns: the structure of viral phylogenetic trees
produced by a combination of evolutionary
and epidemiological processes (Grenfell et al.
2004). Most notably, the HIN1 and H3N2
subtypes of influenza A virus that dominate
seasonal influenza have markedly different dy-
namics (Fig. 4; Bedford et al. 2014, 2015; Vijay-
krishna et al. 2015). H3N2 viruses experience a
strongly selectively driven evolution, with fre-
quent selective sweeps, strong antigenic drift,
and major seasonal crashes in genetic diversity.
In contrast, epidemics and selective sweeps are
both less common in HIN1 viruses, with mul-
tiple lineages persisting across seasons. Parallel
patterns are observed in influenza B virus.
Whereas the Victoria lineage viruses undergo
punctuated fluctuations in genetic diversity in
the same manner as H3N2 viruses, the Yama-
gata lineage viruses experience fewer seasonal
peaks, lower rates of amino acid change, and
slower epidemics (Vijaykrishna et al. 2015), al-
though multiple lineages persist across influenza
seasons in both influenza B virus lineages (Fig.
4). Possible explanations for these distinctive
patterns include differences in receptor-binding
preferences shaped by HA structure or the age
structure of those infected, which also differs
among subtypes and likely impacts patterns of
cross-protective immunity (Bedford et al. 2015;
Vijaykrishna et al. 2015).

There is now an effort to use these phyloge-
netic patterns to predict which virus variants
will dominate in the future and hence should
be incorporated into vaccines, with online tools
able to depict viral evolution in near real time
(Hadfield et al. 2018). Specifically, lineages with
higher rates of branching, and hence that are
producing more descendants, are in theory
more successful (Luksza and Lassig 2014; Neher
et al. 2014).

The Evolution of Antigenic Drift

Arguably, the defining process of influenza virus
evolution, at least in humans, is antigenic drift,
which is the fixation, by natural selection, of
mutations in the HA and NA that enable the
virus to evade the human immune response.
Indeed, because the human immune response

Ecology and Evolution of Influenza Viruses

is not completely cross-protective, natural
selection will predictably favor antigenic vari-
ants that allow the virus to evade immunity
(Fitch et al. 1997). Hence, antigenic drift enables
escape from antibody-mediated neutralization
acquired following infection or vaccination. De-
spite a name easily confused with “genetic drift,”
which in marked contrast describes the random
sampling of mutations through time particularly
in small populations, the defining feature of an-
tigenic drift is strong positive natural selection
(adaptive evolution).

A complete understanding of antigenic drift
is central to the design of effective vaccines, par-
ticularly if it can be inferred through genomic
analyses alone. Although there has been consid-
erable attention given to revealing which HA
residues are the most important in antigenic
escape (Koel et al. 2013; Li et al. 2016), there
are still major uncertainties in our understand-
ing of antigenic evolution and whether it exhib-
its any predictability, particularly in the face of
complex epistatic interactions (Koel et al. 2019).
Mutations in the HA1 region of the HA protein,
particularly in or around the receptor-binding
site, are thought to drive antigenic evolution
(Wiley et al. 1981; Fitch et al. 1997; Bush et al.
1999; Koel et al. 2013). It is interesting that there
is a correlation between antigenic drift and the
incidence of influenza viruses, highlighting its
epidemiological importance (Bedford et al.
2014; Neher et al. 2016).

A central issue is whether antigenic drift is
continuous, involving the gradual generation
and accumulation of antigenically distinct mu-
tations through time, or if it is punctuated, such
that the virus makes “jumps” in antigenic space
because some mutations have greater phenotyp-
ic effect than others, followed by periods of an-
tigenic stasis (Smith et al. 2004; Koelle et al.
2006; Wolf et al. 2006; Koel et al. 2013). In par-
ticular, the use of antigenic cartography, which
explores the pattern of pairwise hemagglutinin
inhibition (HI) distances, has suggested that an-
tigenic drift is punctuated with major jumps in
antigenic space roughly every 1-5 years, corre-
sponding to instances when vaccine efficacy is
especially poor (Smith et al. 2004; Koel et al.
2013). Less clear is whether these jumps in an-
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Figure 4. The contrasting phylodynamics of human influenza viruses. (Top) Left-to-right: Phylogenetic trees of
globally sampled hemagglutinin (HA) gene segments (~1200 sequences) of influenza A H3N2 virus, 2002-2013;
HINI virus, 1998-2009; HIN1pdmO09 virus, 2009-2013; and the Yamagata (red) and Victoria (black) lineages of
influenza B viruses, 2002-2013. Note the different tree shapes that reflect the impact of differing evolutionary and
evolutionary pressures. (Bottom) Left-to-right: Relative genetic diversities through time, a marker of changing
population sizes, in the influenza B virus Victoria lineage; influenza B virus Yamagata lineage; H3N2 influenza A
virus; HIN1 influenza A virus 2003-2008; and HIN1pdm09 influenza A virus (orange) 2009-2013. Again, note
the differences among subtypes. The analysis only utilized viruses sampled in Australia and New Zealand. (From
Vijaykrishna et al. 2015; adapted, courtesy of Creative Commons Attribution Licensing.)
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tigenic space have any predictability, as this
would greatly enhance vaccine design, and it is
notable that no antigenic jumps have been ob-
served in recent years.

There is also evidence for antigenic drift in
H5N1 viruses in poultry (Chen and Holmes
2006; Dugan et al. 2008), which may contribute
to increased evolutionary rates in this virus com-
pared to the subtypes sampled from wild birds
(Fourment and Holmes 2015). In addition, un-
like other avian influenza viruses, H5N1 viruses
are under vaccination pressure because of large
veterinary vaccine campaigns in many coun-
tries, and it is possible that poor vaccination
implementation and efficacy may contribute to
its continued antigenic drift (Lee et al. 2004;
Chen et al. 2006; Swayne and Kapczynski
2008; Eggert et al. 2010; Cattoli et al. 2011). Sim-
ilarly, after initial suppression of H7N9 viruses
following mass poultry vaccination in China,
new strains have begun to emerge that are able
to escape the vaccine (Shi et al. 2018a).

INTRAHOST EVOLUTION OF INFLUENZA
VIRUS

The rapidity of the evolutionary process that
seemingly characterizes all RNA viruses ensures
that genetic and phenotypic variation is gener-
ated and accumulates within individual hosts
infected with influenza virus, although human
influenza B virus may exhibit less intrahost di-
versity than influenza A virus (Valesano et al.
2019). There is, however, considerable uncer-
tainty as to how influenza virus evolves over
such short timescales, and what this means
for the long-term evolution of the virus (Xue
et al. 2018b).

A key issue of contention is the number of
viruses that are transmitted between hosts and
hence that establish new infections (McCrone
and Lauring 2018). In other words, how large
is the population bottleneck associated with host
transmission? Although there is clearly a sub-
stantial reduction in population size as the virus
moves between hosts, there is debate as to
whether single or multiple virus particles initiate
new infections. Critically, the narrower the
transmission bottleneck, the lower the chance
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of coinfection and reassortment. However,
“mixed” influenza virus infections, in which dif-
ferent influenza viruses (A or B), subtypes
(HIN1 and H3N2), or lineages/antigenic vari-
ants of the same subtype are relatively common-
place within single hosts (Ghedin et al. 2009)
and frequently observed in avian populations
(Dugan et al. 2008; Wille et al. 2013, 2017), pro-
vide the raw material for reassortment. Al-
though it is possible that these mixed infections
result from relatively “loose” population bottle-
necks in some cases, such that multiple viruses
are transmitted between hosts (Murcia et al.
2010), they may result from the “superinfection”
of individual hosts in the face of relatively weak
protective immunity.

The most convincing data suggests that
most, although not all, influenza A virus infec-
tions are initiated by a single virion (McCrone
et al. 2018). Importantly, such a severe popu-
lation bottleneck also reduces the occurrence
of “cooperative” interactions between virus par-
ticles, in which different variants contribute
different functions, explaining why these coop-
erative effects have only been observed at a rel-
atively high multiplicity of infection in cell
culture (Xue et al. 2016) and not natural in in-
fluenza A virus infections (Xue et al. 2018a). A
substantial transmission bottleneck may also
mean that antigenic drift is heavily dependent
on the chance transmission of particular viruses
between individuals, rather than the selectively
mediated transfer of advantageous variants.

Although it is tempting to ascribe great im-
portance to intrahost virus evolution, the infec-
tion period associated with influenza is general-
ly so short that natural selection is usually
unable to radically alter mutation frequencies
(Han et al. 2019). Indeed, recent studies suggest
that the intrahost evolution of influenza virus is
dominated by stochastic processes, including
those following frequent population bottlenecks
(McCrone et al. 2018). The exception may be
cases in which the hosts are immunocompro-
mised and shed virus for extended time periods.
Studies of these patients have revealed evolu-
tionary behaviors that differ from hosts infected
for far shorter time periods, with the limited
immune response resulting in variant patterns
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of mutational accumulation (Ghedin et al.
2011; Rogers et al. 2015). Although it is possible
that the prolonged shedding of viruses in im-
munocompromised hosts may sometimes gen-
erate mutations of phenotypic importance and
some of the mutations generated can spread
globally (Xue et al. 2017), modeling suggests
that immunocompromised hosts only play a
limited role in virus evolution because of their
low frequency in the population as a whole
(Eden et al. 2017).
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