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16 Laboratory Methods for
High-Throughput Genotyping

INTRODUCTION

The genetics of complex diseases has been given a tremendous boost in recent years by the intro-
duction of high-throughput laboratory methods that allow us to approach larger questions in larger
populations and to cover the genome more comprehensively. The ability to determine genotypes
of many individuals accurately and efficiently has allowed genetic studies that cover more of the
variation within individual genes, instead of focusing only on one or a few coding variants, and to
do so in study samples of reasonable power. Chip-based genotyping assays, combined with knowl-
edge of the patterns of coinheritance of markers (linkage disequilibrium, LD) developed through
the HapMap Project (http://www. hapmap.org), have stimulated genome-wide association studies
(GWAS) of complex diseases. These are being encouraged and supported by the National Institutes
of Health (NIH) and other groups, notably The Wellcome Trust. Recent successes of GWAS in
identifying specific genes that affect risk for common diseases are dramatic illustrations of how
improved technology can lead to scientific breakthroughs. Rapid developments in high-throughput
sequencing may enable new kinds of studies. 
A key issue in high-throughput genotyping is to choose the appropriate technology for your

goals and for the stage of your experiment, being cognizant of your sample numbers and resources.
This chapter introduces some of the commonly used methods of high-throughput single-nucleotide
polymorphism (SNP) genotyping for different stages of genetic studies and briefly reviews some
of the high-throughput sequencing methods just coming into use. We will also note some recent
developments in “next-generation” sequencing that will enable other kinds of studies. We cannot
be comprehensive, and technology in this area is rapidly changing, so our comments should be
taken as a starting point for further investigation.
For simplicity, we will discuss three main types of studies: candidate genes, linkage studies and

their follow-up, and GWAS and their follow-up. There are choices of genotyping technologies
suited to each of these types of studies (Fig. 16.1). Throughput, cost per SNP genotype, and costs
per sample can be very different for different technologies. Some technologies, which we call “se-
rial,” allow testing of small to modest numbers of SNPs on many subjects in each reaction and are
easy to customize. Others, called “parallel” methods, test up to a million SNPs on each subject at
one time in fixed panels. The cost per SNP for a serial method is much larger than for a parallel
method, but the cost per subject is much less. 
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WHY ARE SNPS USED?

At this time, most SNPs do not have known effects on gene expression or function; they are used as
markers for genetic differences in their vicinity. Some SNPs are known to cause differences in gene
expression or function. The most obvious functional SNPs are those that alter the amino acid encoded
at a particular position in a protein or terminate translation leading to a shortened (and often rapidly
degraded) polypeptide. Historically, much of the attention to “functional” SNPs has been restricted
to these nonsynonymous coding SNPs. More recently, increasing attention has been paid to SNPs
that potentially alter splicing, transcription, or mRNA stability. These are generally located in or
near a gene and can include synonymous coding SNPs that alter binding sites for the splicing ma-
chinery. Such SNPs are harder to recognize and to distinguish from those that do not affect gene ex-
pression. It is even harder to tell whether a variation located at some distance from any known gene
might have a function, although that is more likely if it lies within a region that is highly conserved
among distantly related species. 
The binary nature of SNPs has made them the marker of choice in most current work, particularly

high-throughput studies. There are about 7 million validated human SNPs in the dbSNP database
(http://www.ncbi.nlm.nih.gov/SNP/), with many more listed. Genotypic data on about 4 million dif-
ferent SNPs for three major continental groups are available from the HapMap Project, with more
coming. SNPs are also available as markers for model organisms. New approaches allow high-
throughput SNP genotyping in multiplex reactions. Copy-number variations (CNVs, described in
Chapter 13) are increasingly recognized as important, and many of the SNP genotyping platforms
also provide information on CNVs (although standardization and interpretation are more difficult).
SNPs can, obviously, be detected by direct sequencing at high accuracy. This is the primary

method of SNP discovery, and it demands sequencing of a sufficient number of individuals at an
accuracy and coverage that distinguishes real SNPs from sequencing artifacts. Databases still con-
tain many SNPs that are likely to be artifacts. The extraordinary efforts of the HapMap Project
(The International HapMap Consortium 2005; Frazer et al. 2007) to date have been very valuable
in identifying common SNPs, primarily those with minor allele frequencies (MAFs) greater than
5%. Efforts are under way to examine a wider variety of populations to discover additional SNPs
and broaden our understanding of genetic diversity (e.g., 1000 Genomes, A Deep Catalog of Human
Genetic Variation, at http://www.1000genomes.org). However, when one is studying a particular
disease and has found an association between SNPs and the disease, resequencing in the group
with the disease generally leads to discovery of many more SNPs in that gene, often including ones
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FIGURE 16.1 Different technologies are appropriate for different types of projects and scales of SNPs to be geno-
typed.
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that are common within the study group, although not in the larger population. For example, se-
quencing just 16 individuals (eight with a high-risk haplotype and eight with a low-risk haplotype
for alcohol dependence) in the exons and proximal 5′ and 3′ regions of OPRK1 revealed seven new
SNPs and an 830-bp insertion/deletion (Xuei et al. 2006; Edenberg et al. 2008). 
However, sequencing is not at this time an efficient way to genotype SNPs, although as se-

quencing technology progresses toward the much sought “$1000 genome” it will become the
method of choice. The most efficient methods at this time involve single-base extension (in effect,
microsequencing) with readouts that include mass differences (e.g., Sequenom MassARRAY), light
flashes (pyrosequencing), or hybridization, with readouts that include measures of the amount of
oligonucleotide hybridized (e.g., microarrays), cleavage of hybridized oligonucleotides (e.g., Taq-
Man, Applied Biosystems), or melting curves (e.g., LightTyper, Roche Applied Science). There
are platforms that work best for targeted SNP genotyping and others that are aimed at whole
genomes. Each has advantages for particular studies.

CAN CANDIDATE GENES BE USED?

Many studies focus on candidate genes that are chosen on the basis of physiology or suggestive re-
sults from other studies. One problem is that many candidate genes are weak candidates, with low
prior probabilities. This, plus some publication bias toward positive findings, might explain the large
number of candidate-gene association studies that have not been replicated. As association findings
are reported, many groups will want to test the significant genes in their own study sample. This is
a good strategy for confirmation studies and for some with too small a subject population to with-
stand the multiple testing corrections required for GWAS. With a small sample, the necessity to cor-
rect for the very high levels of multiple testing in a GWAS make it very difficult to detect effects of
modest size with genome-wide significance (see Chapter 6). Even samples that are large in terms
of our ability to do sophisticated and reproducible phenotyping (1000–2000 cases and controls) are
proving to be underpowered in studies of complex traits in which the contribution of any one genetic
variant is small. Small samples can, however, be very useful in replicating results. In this case, the
prior probability is much higher and the likelihood of confirming a finding is increased. 
Many early candidate gene studies tested only a single SNP, which carries very limited informa-

tion about the overall variation within that gene. This approach can be successful if there is a known,
strong functional SNP (e.g., Thomasson et al. 1991), but it often leads to false-negative results. Even
in simple situations (Mendelian disorders) in which a single change in one gene can lead to disease,
there is often allelic heterogeneity, and testing only one SNP can miss the one(s) that are functional
in that family or population. It is generally better to cover a larger fraction of the variation by geno-
typing multiple SNPs chosen based on LD in addition to hypothesized functional SNPs, although
cost and time (and concerns about multiple testing) can preclude full coverage. 
HapMap data (The International HapMap Consortium 2005; Frazer et al. 2007) can be used to

select the SNPs that best report on common variation within a gene or region (“tag” the region). It
is useful first to visualize the LD structure in the region of interest, using Haploview (Barrett et al.
2005) (which can be performed within the HapMap website). A program such as Tagger (de Bakker
et al. 2005) can aid in the selection of SNPs; it can be run from a server (through HapMap or
directly at http://www.broad.mit.edu/mpg/tagger). Parameters such as minimum MAF of SNPs to
be “tagged” and the degree of correlation (r2) to be accepted as adequate can be adjusted so that a
set of SNPs reasonable for sample size, technology, and budget can be selected. 
The genotyping technologies most appropriate for candidate-gene studies are what we call “serial”

technologies; that is, they test from 1 to 48 SNPs at a time on each sample. A set of assays can be de-
signed, run, and analyzed; then, if needed, a follow-up set of assays can be run. These generally allow
testing of a large number of samples for a modest number of targeted SNPs at modest cost. There are
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many technologies that are good choices for candidate-gene studies (Tsuchihashi and Dracopoli 2002). 
TaqMan SNP Genotyping Assays (Applied Biosystems) measure individual SNPs using a 5′ nu-

clease assay (De la Vega et al. 2005). Many assays (>4.5 million) have been predesigned and it is
relatively straightforward to design new assays. Single SNPs are generally run on sets of 96 or 384
samples at a time. Moving up to low levels of multiplexing, the SNaPshot Multiplex System (Applied
Biosystems) is a primer extension-based method with detection by capillary electrophoresis; it allows
multiplexing up to 10 SNPs starting from as little as 3 ng DNA per sample. The SNPlex Genotyping
System from Applied Biosystems (De la Vega et al. 2005) uses the oligonucleotide ligation assay
(Nickerson et al. 1990) to discriminate SNPs, followed by PCR and capillary electrophoresis; it al-
lows genotyping of up to 48 SNPs at a time. Both SNaPshot and SNPlex use capillary sequencing
instruments, which might already be available in many laboratories. The LightTyper system (Roche
Applied Science) uses melting curve analysis to discriminate individual SNPs. These methods use
fluorescently labeled oligonucleotides for detection of the SNPs (Bennett et al. 2003). 
Pyrosequencing detects SNPs by a synthesis reaction with detection based on flashes of light

when a nucleotide is incorporated (Ahmadian et al. 2000; Pourmand et al. 2002). The Invader assay
(Third Wave Technologies, Inc., now Holologic) involves formation and then cleavage of a flap created
by hybridization of two oligonucleotides to the target sequence; the signal from this initially cleaved
flap is amplified in a second fluorescence resonance energy transfer reaction (Lyamichev et al. 1999). 
The Sequenom MassARRAY system (Jurinke et al. 2001; Jurinke et al. 2002) can measure up to

36 SNPs on 384 samples per assay. A region is amplified by polymerase chain reaction (PCR) and
then a single-base primer extension is performed using modified deoxyribonucleoside triphosphates
that increase the resolution with which a mass spectrometer can distinguish the four possible nucleotides
added. An advantage of this is that unmodified oligonucleotides can be used, reducing the initial cost. 
These genotyping techniques are good for testing candidate genes and small regions. One can

test a modest number of SNPs, analyze them, and then genotype additional SNPs to whatever depth
of coverage is desired in genes or regions that remain of interest. The investigator has nearly com-
plete freedom to design assays for any SNPs desired for the particular project. 

LINKAGE REGIONS CAN BE FINE-MAPPED BY HIGH-THROUGHPUT SNP GENOTYPING

Although new availability of commercial platforms has stimulated interest in GWAS, there are
many projects that performed linkage studies and identified broad regions likely to contain genes
in which variations affect risk for a disease or a related phenotype. Linkage studies have relatively
low resolution, so one needs a way to follow up such studies with fine-mapping. High-throughput
SNP genotyping offers an attractive approach to this task. One can either use a parallel approach,
such as a custom microarray of thousands or tens of thousands of SNPs or an Illumina GoldenGate
assay (Fan et al. 2006) to test from 384 to 1536 SNPs, or a serial approach in which SNPs are tested
in smaller numbers at a time. 
If there are particularly good candidate genes within the linkage region, the serial approach of

testing a limited number of such candidates may be optimum because it limits costs and also limits
multiple testing. An example is targeting a set of four genes that encode subunits of the γ-aminobu-
tyric acid A receptor in a region of chromosome 4 linked to both alcohol dependence and an elec-
trophysiological phenotype (Edenberg et al. 2004). These made excellent candidate genes on the
basis of both physiological knowledge and location in the center of the linkage peak. A serial ap-
proach was taken, first testing five to six SNPs in each gene and then covering the gene in which
multiple SNPs were associated with alcohol dependence with additional SNPs in an attempt to fur-
ther localize the key SNPs. The Sequenom MassARRAY system was used. GABRA2 was shown
to be associated with alcoholism, with a large LD block extending from intron 3 past the 3′ end of
the gene (Edenberg et al. 2004); this finding has since been replicated by many groups. 
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In a case in which there are no strong candidate genes or the candidate genes tested did not prove
to be associated, a parallel approach may be called for. Illumina offers GoldenGate Custom Panels that
can measure 384–1536 assays per reaction. These can be valuable for testing many sites across a linkage
region, or setting up panels to follow up the best “hits” from an earlier study (either a GWAS or a com-
pilation of candidate genes). The Center for Inherited Disease Research at Johns Hopkins University
is a resource for getting such genotyping performed, if it is approved by their advisory panel. 
One can also make custom-designed genotyping microarrays. An example of this approach was

the design of a panel of 1536 SNPs (using the Illumina GoldenGate assay) that used LD information
to capture data (at r2 > 0.8) on >4000 SNPs with MAF > 0.10, along with a small number of non-
synonymous coding SNPs, in a linkage region on chromosome 7q22 covering about 18 Mb (Dick
et al. 2007). Of these, eight SNPs were found to be associated with alcohol dependence at p < 0.01,
four of which clustered in a single gene. This gene was followed up by genotyping 16 additional
SNPs, using the Sequenom MassARRAY assay; 12 SNPs in that gene were nominally significant,
with eight remaining significant when corrected for multiple testing (Dick et al. 2007). 

GWAS AND FOLLOW-UP BY ADDITIONAL GENOTYPING

Parallel genotyping tests many SNPs on a single sample (or two samples) at one time, using an
array-based format. The number of SNPs per array has dramatically increased in the past few years,
from about 10,000 to 100,000, 300,000, 600,000, and now more than 1 million. Currently, the
Affymetrix Genome Wide Human SNP Array 6.0 has more than 906,600 SNPs and more than
946,000 probes for the detection of copy number variation, and the Illumina Human1M-Duo Bead-
Chip assesses more than 1.1 million loci per sample. 
Both of these array-based methods are widely used. There are differences between these two

platforms in design, SNP selection, and biochemistry, but overall data quality and coverage appear
similar. About 480,000 of the SNPs on the Affymetrix Genome Wide Human SNP Array 6.0 were
selected based on what worked in a “complexity-reduction” step that involved selection of restric-
tion fragments between about 200 and 1100 bp. These were supplemented with 424,000 tag SNPs,
plus the 946,000 monomorphic sites of which about 202,000 are in known CNV regions and the
rest were chosen by spacing to detect CNV. SNP detection is by differential hybridization to 25-
mers designed to match both alleles at each site. Illumina probes are larger (about 50 nucleotides)
and were chosen to cover the genome based on HapMap LD data plus nonsynonymous coding
SNPs. Both platforms give excellent genome-wide coverage in European populations and very
good coverage even in African populations. It should be noted that there are significant gaps in
both. For example, an analysis of SNPs (MAF ≥ 5%) in about 900 genes relating to addiction, many
were not well tagged (r2 ≤ 0.8) by either platform (Saccone et al. 2009). Therefore, follow-up of
initial results with additional genotyping is valuable. 
Initially, the high cost of the genome-wide microarray assays made individual genotyping of

large samples prohibitive for many groups. Pooling of samples can reduce costs (Bansal et al. 2002;
Sham et al. 2002). Pooling requires very careful measurement of DNA concentrations to equalize
the contributions of each individual, but when performed carefully this method can measure relative
allele frequencies to within a few percent. Pooling has provided interesting leads that can be followed
up by individual genotyping of the most significant findings. However, pooling does not provide
nearly as much information as individual genotyping. It requires either a dichotomous phenotype or
the decision to make a pseudo-dichotomous phenotype—for example, by contrasting the two ends
of a distribution. Only the phenotype by which the pools were created can be analyzed; information
on endophenotypes or related phenotypes is lost, although one could theoretically make smaller
pools matched on more than one phenotype. Pooling approaches have been effective in studies of
alcohol dependence and bipolar disorder genetics (e.g., Johnson et al. 2006; Baum et al. 2008). 
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As the density of SNPs on arrays has increased and the costs gone down, microarrays are in-
creasingly used for GWAS on individual samples. This approach is much more powerful and allows
analysis of multiple phenotypes and endophenotypes at once, as well as analysis of quantitative
traits. This approach has been successful in studies of macular degeneration, height, and type 2 di-
abetes (e.g., Klein et al. 2005; Weedon et al. 2007; Zeggini et al. 2008; see also Chapter 18). 
GWAS must be followed up. One can attempt replication either of the leading SNPs in another

population, using one of the serial genotyping methods described previously (see “Can Candidate
Genes Be Used?”) or one can perform follow-up GWAS on another population. In some cases, the
strongest signal from an analysis or meta-analysis might be an imputed SNP (i.e., an SNP not ac-
tually genotyped but rather predicted based on the genotypes and the known LD in the region; see
Chapter 10) (e.g., Ferreira et al. 2008). Such imputed SNPs should be genotyped directly in the
initial population, using one of the serial methods, because imputation is not exact. Finally, denser
genotyping and resequencing of the significantly associated genes in a GWAS is often performed
in search of potentially functional polymorphisms. 

QUALITY CONTROL OF SNP DATA IS REQUIRED

Quality control (QC) of the SNP data is required before analysis. This is not a simple task. Although
the details of QC could be a chapter themselves, some basic approaches are relatively standard. QC
is usually performed in two cycles: (1) Remove problem samples based on the sample QC metrics
and (2) recalculate the SNP metrics on the remaining samples before SNP QC metrics are applied. 
It is useful to test DNA quality before running the whole-genome chips. First, a spectrum from

220 to 350 nm is better than just examining A
260
/A

280
, because sometimes there are contaminants

that absorb in the 230–270-nm region. These contaminants can lead to large overestimates of the
amount of DNA actually present and can also inhibit genotyping or sequencing reactions. Use of
a dye selective for double-stranded DNA (e.g., PicoGreen, Molecular Probes, Invitrogen) can give
a better measurement of DNA quantity in the presence of RNA or free nucleotides, but it does not
reveal the presence of contaminants. A combination of the two approaches is best. Then, evaluation
of fragment size should be performed on agarose gels. Poor-quality samples (contaminated or too
fragmented) generally give poor results. The average fragment size needed depends on the platform.
The Affymetrix Genome Wide Human SNP Array 6.0 uses a size selection of fragments from 200
to 1100 bp, so fragmented DNA does not work well. The Sequenom MassARRAY generally am-
plifies regions of about 100 bp and therefore is less affected by small fragment size. 
For any genotyping methods, samples that show too many dropouts or no-calls are suspect and

are generally removed from analysis if <97%–98% of the SNPs give genotypes. Samples with het-
erozygosity that is too high or too low compared with others in the population are also suspect and
could reflect mixed samples containing DNA from more than one individual. Probes on the X and
Y chromosome can be used to confirm sex. Chromosomal loss and duplication, particularly of the
X chromosome, are often observed in immortalized cell lines; if the other data appear to be okay,
one can choose to selectively remove the data from the X chromosome and retain the rest. With
genome-wide data, one can identify cryptic relatives (i.e., individuals in the data set who are related
to each other) based on allele sharing. When samples from multiple studies are analyzed jointly,
this might include relatives or even the same subject participating in more than one study.
After sample QC, SNP QC is needed. Duplicate samples should give the same calls. It is a good

idea to include one or more HapMap samples to compare the genotype call with that in the database.
In many studies, SNPs with MAF < 0.01 are not analyzed, because calling rare genotypes is subject
to more errors. Although many SNPs may be lost by this filter, the overall cost to the project power
is not great because even in studies with 1000 cases and 1000 controls, the power to detect effects
with rare genotypes is very limited. SNPs for which many samples do not give genotypes (dropouts)
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are suspect and are usually omitted from analysis. The acceptable call rate depends on the nature
of the study, but usually is set in the region of 95% or better. Tests of Hardy–Weinberg equilibrium
(HWE) are useful in flagging SNPs with nonrandom dropping out of a genotype, but the problem
of multiple testing limits how strictly they can be screened and some SNPs with bias might still
pass this filter. When measuring 1 million SNPs in a GWAS, deviations from HWE must generally
be more significant than p < 0.000001 to remove an SNP. Differential dropouts of one homozygote
(usually the minor allele) or over- or underrepresentation of heterozygotes should raise a flag and
lead to a close look at the raw data from that SNP (see the following). 
Examining the clustering of the three genotypes, using either a Cartesian or polar plot of the in-

tensity of alleles, is useful (Fig. 16.2 shows examples from Sequenom data, but the basic ideas and
method are general). Good-quality SNPs show three clearly defined and tight clusters, with the ho-
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FIGURE 16.2 Quality control of SNP genotyping. One method of examining the quality of the genotype calls is to
plot the intensity of the signal for one allele (green) versus the intensity of the signal of the other (blue) with het-
erozygotes shown in yellow, and uncalled alleles in red. Data shown are from the Sequenom MassARRAY reaction,
but in principle could be from many technologies including the whole-genome scale microarrays. (A) Good-quality
assay, with good clustering and separation of the alleles. (B) Bad assay, with overlap of homozygotes and heterozygotes
such that many samples are not called. (C) Questionable assay; the two clusters of heterozygote intensities might
suggest copy number problems. (D) Questionable assay; although clustering looks tight and heterozygotes are well
balanced, close inspection suggests that many of the unknowns might represent homozygotes for the minor allele.
Differential loss of one of the homozygous genotypes will bias the analysis.
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mozygotes falling along the vertical or horizontal axis and the heterozygotes at a 45° angle (Fig.
16.2A). One can often detect a problem such as overlap of the clusters from one allele and from the
heterozygotes (Fig. 16.2B). One might also detect more than three clusters or a split cluster (Fig.
16.2C), suggesting the possibility of a relatively frequent CNV. The hardest potential error to detect
is the selective dropping out of the minor allele (Fig. 16.2D); such SNPs will clearly give incorrect
results. The huge numbers of SNPs in a GWAS precludes looking at intensity plots of all of the
SNPs, but one should look at the intensity plots of those deemed significant. It is valuable to regeno-
type significant SNPs by a different technique to insure that the finding reflects the real genetics
rather than a technical artifact.
Most QC issues are the same for GWAS as for the more targeted studies, but the vast amount

of data makes some additional checks both possible and necessary. In GWAS the biochemistry is
typically performed in an automated or semiautomated manner on sets of 48 or 96 samples (plates),
so an additional analysis is usually performed to detect situations in which one of the plates differs
from the others, perhaps because of some aspect of its processing. This “plate effect” is detected
by analyzing the allele frequency of the SNP on that plate against the allele frequency on the sum
of the other plates by a chi-square test, and discarding data if a plate effect is seen at the level of
10–8, or multiple plates show effects at 10–4 or worse. For best results, cases and controls should be
evenly distributed on each plate; otherwise, subtle differences in the biochemistry can lead to biases
in the allele calling. These subtle biases will be an issue when, as is happening increasingly, data
from controls genotyped at one time in one study are used with data from samples genotyped at a
different time and perhaps in a different laboratory to increase power in another study. 

NEXT-GENERATION SEQUENCING WILL REVOLUTIONIZE GENOTYPING

The rapid development of high-throughput “next-generation sequencing” technology, by which we
mean “massively parallel” sequencing, offers great potential to revolutionize genotyping (Mardis
2008). It is already playing a role in identifying novel SNPs (Hodges et al. 2007; Van Tassell et al.
2008; Wheeler et al. 2008) and other structural variants such as insertion/deletion (indels) and
CNVs (Campbell et al. 2008). An early study reported that at least 13-fold coverage is needed to
identify 99% of the heterozygous SNPs (Wheeler et al. 2008). 
Next-generation sequencing technology is capable of sequencing from hundreds of thousands

to hundred millions of DNA (or cDNA) fragments in a single instrument run in a massively parallel
fashion. Such high-throughput sequencing technology has been used in applications including de
novo sequencing, resequencing to detect SNPs and other variants, transcriptome sequencing, im-
munoprecipitation-based protein–DNA or protein–RNA interaction mapping, and DNA methylation
using bisulfite-mediated cytosine conversion. When the cost of sequencing a human genome ap-
proaches $1000, the current target, sequencing will probably replace genotyping for GWAS.
So far, three major platforms are commercially available: the Roche GS FLX Sequencer (454

technology, 454 Life Sciences, Roche), the Illumina Genome Analyzer (Solexa), and the Applied
Biosystems SOLiD sequencer (SOLiD 3 System). The 454 Sequencer produces longer reads of  >250
bp per fragment, in contrast to 35- to 50-bp reads of the other two platforms (Solexa and SOLiD).
The short-sequence instruments produce many more reads for each instrument run. The capacities of
these instruments are increasing rapidly with new development in the chemistry and physics of the
techniques, so detailed figures would be out of date before this chapter is published, but some already
claim >20 Gb of sequence per run. Therefore, we will restrict our discussion to some general issues. 
High-throughput sequencing offers the potential to identify de novo SNPs as well as previously

reported SNPs. Complete genome-wide resequencing of an individual has been published for two in-
dividuals, James D. Watson (Wheeler et al. 2008) and Craig Venter (Levy et al. 2007). These sequences
showed many new variants, particularly insertions, deletions, and translocations. Given present costs,
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however, a major current application is detection of variations in a focused genomic region, usually
to follow up significant association studies by identifying potentially functional variation. 
There are several methods available to select focused genomic regions from individual samples.

One approach is to amplify the region through multiplex PCRs (Porreca et al. 2007), but this can
be expensive and time-consuming, and PCR artifacts are possible. One can also produce reduced
representation libraries by constructing cDNA libraries of a temporally and spatially specific tran-
scriptome (Bainbridge et al. 2006; Barbazuk et al. 2007), which focuses on variations within tran-
scripts, or by selecting DNA fragments of a specific size after complete restriction endonuclease
digestion (Barbazuk et al. 2007; Van Tassell et al. 2008).
Recently, microarrays have been used to capture genomic regions of interest (Albert et al. 2007;

Hodges et al. 2007). The NimbleGen Sequence Capture Array (Roche) can be used to isolate up to 5
Mb of DNA using probes of 50–80 nucleotides tiled across the region(s) of interest. Similar technology
has also been implemented in another study, in which a customized array was designed that contains
55,000 100-mer oligonucleotides (Porreca et al. 2007). The selected regions can be eluted and se-
quenced. One concern is whether the capture efficiency in different samples is comparable, given the
presence of SNPs and other variations; platforms with longer probes are less sensitive to this. 
This technology is quite good at identifying structural variants such as deletions, insertions,

duplications, and inversions. Sequencing short reads from both ends of millions of DNA fragments
of known size (hundreds to thousands of base pairs) allows one to determine if the spacing and
orientation of the paired sequences matches that in the genome (Campbell et al. 2008), and thereby
detect many insertions and deletions. 

SUMMARY AND CONCLUSIONS

High-throughput genotyping technology has enabled GWAS that have great promise for identifying
genes that contribute to complex diseases and phenotypes and for large-scale follow-up of the top
candidate genes from such studies. There are a range of techniques from whole-genome scale to
individual SNPs. As with all techniques, appropriate choice of the approach for different projects
or phases of projects is important. Careful attention to quality control is also essential. In the future,
whole-genome sequencing may overtake the current large-scale technologies. 
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