Index

A

Accommodation
- induction, 248
- mouse models, 114–115

Acute rejection
- B-cell role, 56–58
- biomarkers, 46–49
- chemokines, 43–45, 52
- innate immunity, 52–54, 245–247
- kidney transplantation, 344–346
- mouse models
 - antibody-mediated rejection, 112–113
 - heart transplantation, 109–110
 - kidney transplantation, 110–111
 - skin transplantation, 108–109
- overview, 41–42
- T-cell role
 - activation, 54–56
 - memory T cells, 56
 - regulatory T cells, 55

AEB-071. See Sotrastaurin

Alefacept, immunosuppression therapy, 102

Alemtuzumab
- immunosuppression induction, 96–97
- lymphocyte depletion, 146

Allogeneic response. See also **Rejection**
- allogeneic nonself, 30
- B cell, 35, 37
- graft endothelium role, 36–37, 54
- innate immune cells, 32–33, 35–36
- overview, 29–30
- prospects for study, 37
- T cell
 - alloreactivity, 30–32
 - T-cell receptor gene rearrangement, 31
- types in transplanted organ recognition, 34–35

All-trans retinoic acid (ATRA), regulatory T-cell stability effects, 194

ALS. See **Antilymphocyte serum**

AMR. See **Antibody-mediated rejection**

Antibody-mediated rejection (AMR)
- acute humoral response, 57–58
- complement role, 81–82
- epitopes, 241–243
- heart transplantation, 321–322
- kidney transplantation, 345–346
- macrophage role, 53–54
- mechanisms, 240–243
- mouse models
 - acute rejection, 112–113
 - chronic rejection, 113–114
 - hyperacute rejection, 112
- prevention
 - accommodation induction, 248
 - antibody or antibody-producing cell removal, 248
 - antigen removal, 247
 - B-cell tolerance induction, 248
 - complement cascade prevention, 247–248

Antilymphocyte serum (ALS), history of use, 13

Antithymocyte globulin (ATG)
- immunosuppression induction, 95–96
- primate model use, 132–133, 145

ATG. See **Antithymocyte globulin**

ATRA. See **All-trans retinoic acid**

Azathioprine
- immunosuppression maintenance, 97
- primate model use, 128

B

B cell. See also **Antibody-mediated rejection; Lymphocyte depletion**
- acute rejection role, 56–58
- allogeneic response, 35, 37
- allograft rejection role, 43
- mesenchymal stromal cell interactions with allogeneic cells, 231–232
- tolerance induction, 248

Basiliximab, immunosuppression induction, 96

B-Cell transplantation. See **Islet transplantation; Pancreas transplantation**

Betacept, immunosuppression maintenance, 99–100

Billingham, Rupert, 6–8, 259

Bioethics. See **Ethics, transplantation**

BK virus, kidney transplantation infection, 349–350

Bortezomib, immunosuppression therapy, 101

C

Calne, Roy, 9–10

Campath-1H. See **Alemtuzumab**

CAN. See **Chronic allograft nephropathy**

©2014 by Cold Spring Harbor Laboratory Press
Cancer. See also Posttransplantation lymphoproliferative disease
guidelines for transplantation by cancer type, 386
kidney transplant patient management, 394–395
preexisting cancer
deceased donors, 385, 387–388
organ donors, 384–385
transplant recipients, 381–382
risk
classification, 387
immunosuppression regimens, 391–392
organ transplantation and cancer types, 389–390
screening in transplant recipients
breast cancer, 393
cervical cancer, 393
colon cancer, 394
renal cancer, 394
skin cancer, 394
survival in transplant recipients, 392–393
transmission by type, 387
viral infection in carcinogenesis after transplantation, 390–391
Carrel, Alexis, 2–4, 407–408
CCR2, allograft rejection role, 45
CCR4, allograft rejection role, 45
CCR5, allograft rejection role, 43–44
CCR7, allograft rejection role, 45
CD3 immunotoxin, lymphocyte depletion, 135, 147
CD28, costimulatory blockade, 130, 177–179, 184–185, 265
CD40, costimulatory blockade, 180–181, 185, 249, 265–266
CD40 L. See CD154
CD58. See LFA-3
CD134. See OX40
CD137. See 4-1BB
CD154 (CD40 L), costimulatory blockade, 130, 177–179, 184–185, 265
CD40, costimulatory blockade, 180–181, 185, 249, 265–266
CD40 L. See CD154
CD58. See LFA-3
CD134. See OX40
CD137. See 4-1BB
CD154 (CD40 L), costimulatory blockade, 130, 177–179, 184–185, 265
Chimerism, tolerance induction
clinical studies of mixed chimerism, 164–166, 252–263
history of study, 14–16
mechanism of mixed chimerism induction, 166–169
mouse model studies
lymphocyte depletion, 158–159
mixed chimerism, 160
pig studies of mixed chimerism, 164–166, 252–263
primate models
central tolerance with mixed chimerism, 115–116, 163–164
peripheral tolerance with costimulatory blockade, 116
prospects for study, 169–170
Chronic allograft nephropathy (CAN), 58–59
Chronic lung allograft dysfunction (CLAD), 313–314
Chronic rejection
antibodies, 60–61
antibody-mediated rejection mouse models, 113–114
biomarkers, 49–50
endothelial cell role, 60–61
fibrosis, 61–62
histological lesions, 59–60
human leukocyte antigen antibodies, 61
mechanisms, 58–59
overview, 42
CLAD. See Chronic lung allograft dysfunction
CMV. See Cytomegalovirus
Complement
antibody-mediated rejection role, 81–82
antibody-mediated rejection therapeutic targeting, 247–248
C3 activation, 76–77
cascade, 78
cell-mediated graft rejection role, 80–81
inflammatory injury mediation shortly after transplantation, 77, 79–80
ischemia–reperfusion injury role, 77, 79, 87
mesenchymal stromal cell response, 227
Toll-like receptor pathway cross talk, 86
Costimulatory blockade. See also specific molecules
clinical studies
CD154 antibody, 183
CTLA-4 antibody, 183–184
off-target effects, 267
peripheral tolerance induction, 116
primate models
CD154 antibody, 182–183
CTLA-4 antibody, 130–131, 182
prospects
activation of inhibitors, 185
CD154/CD40, 185
CD28 blockade, 184–185
LFA-3, 185–186
systemic immunosuppression, 249
targets
CD28/CTLA-4, 177–179
CD40/CD154, 180–181, 265–266
inducible T-cell costimulator, 179–180
OX40, 181/4-1BB, 181–182
programmed death 1 receptor, 180
transgenic animal studies, 249
CP-690550. See Tofacitinib
CRM9, lymphocyte depletion, 147
CsA. See Cyclosporine
CTLA-4
costimulatory blockade
activation of inhibitors, 185
clinical studies, 183–184
overview, 177–179, 265
peripheral tolerance induction, 116–117
primate model studies, 130–131, 182
regulatory T-cell function, 196
Index

CXCR3, allograft rejection role, 44–45
Cyclosporine (GCA)
 history of use, 13–14
 immunosuppression maintenance, 98
 primate model use, 129
Cytomegalovirus (CMV)
 lymphocyte depletion association, 149
 opportunistic infection, 372, 377–380
 prophylaxis, 378

D
Daclizumab, immunosuppression induction, 96
DC. See Dendritic cell
Delayed graft function (DGF), kidney, 343–344
Dempster, William, 4–5
Dendritic cell (DC)
 acute rejection role, 54
 allogeneic response, 33, 35–36
 allograft rejection role, 42–43
 mesenchymal stromal cell modulation, 229–230
 plasmacytoid dendritic cell hypothesis of tolerance induction
 kidney transplantation, 325
 liver transplantation, 326
DGE. See Delayed graft function
Diabetes. See also Islet transplantation; Pancreas transplantation
 complications, 289–293
 islet transplantation, 25
 kidney transplantation, 23–24
 renal failure progression, 289
Donald, Hugh, 6

E
EBV. See Epstein–Barr virus
Eculizumab, immunosuppression therapy, 101
Endothelial cell
 acute rejection role, 54
 allograft rejection role, 36–37
 chronic rejection role, 60–61
 growth factor receptors in activation, 61
Epstein–Barr virus (EBV). See also Posttransplantation
 lymphoproliferative disease
 opportunistic infection, 372, 375, 377–379
Ethics, transplantation
 default to donation policy, 401–402
 encouraged volunteerism
 enforcement, 402
 inadequacy in organ donation, 400
 markets for organs, 400–401
 organ procurement policy, 399–400
 organ rationing and justice, 404–405
recipient equity and organ distribution fairness, 402–404
Everolimus, immunosuppression maintenance, 99

F
Facial transplantation
 complications, 364–366
 immunosuppression, 363–364
 outcomes
 motor function, 359–362
 nerve sensitivity, 359
 patient satisfaction, 363
 peripheral nerve regeneration and cortical integration, 360, 363
 overview, 355–356
 primate models, 128
 prospects, 366
 rejection, 364
 surgical technique, 356–358
Fingolimod (FTY720), primate model use, 130, 146
4-1BB (CD137), costimulatory blockade, 181–182
Foxp3, regulatory T-cell induction, 192–193
FTY720. See Fingolimod

G
GATA3, 199
Gibson, Thomas, 5–6
Glucocorticoids, immunosuppression maintenance, 97–98
Graft-versus-host disease (GVHD)
 chimerism studies, 133–134
 hematopoietic cell transplantation, 158, 266–267
 history of study, 8
 mixed chimerism studies in mice, 160
Guthrie, Charles, 3
GVHD. See Graft-versus-host disease

H
Hamburger, Jean, 8–9
Hand transplantation
 complications, 364–366
 immunosuppression, 363–364
 outcomes
 motor function, 359–362
 nerve sensitivity, 359
 patient satisfaction, 363
 peripheral nerve regeneration and cortical integration, 360, 363
 overview, 355–356
 primate models, 128–129
 prospects, 366
 rejection, 364
 surgical technique, 356–358

©2014 by Cold Spring Harbor Laboratory Press
HAR. See Hyperacute rejection
Heart transplantation
- antibody-mediated rejection, 321–322
- heart/kidney transplantation outcomes, 329–335
- heart/lung transplantation, 312
- immunosuppression, 320–321
- kidney-induced cardiac allograft induction overview, 327
- primate models, 329
- regulatory T-cell studies
coculture suppression assays, 328–329
host thymectomy, 328
major histocompatibility complex-mismatched swine, 329
putative intragraft T regs, 329
roles
donor antigen load, 327–328
donor kidney irradiation, 328
donor nephrectomy, 328
mouse models of acute rejection, 109–110
organ preservation, 322
outcomes, 322
overview, 25, 319–320
primate models, 128
recipient demographics, 320
surgical technique, 322
Hepatitis, opportunistic infection, 372–374, 378–379
Herpes simplex virus (HSV), opportunistic infection, 372–373, 377
HHV-8. See Human herpes virus 8
Histocompatibility typing, historical perspective, 12–13
Historical perspective, transplantation
- brain death in donors, 11
- chimerism, 14–16
- early history, 1–2
- hemolysis for renal failure, 11
- histocompatibility typing, 12–13
- immunosuppression, 9–10, 13–14
- kidney transplantation, 4–5, 8, 11–13
- liver transplantation, 275–276
- lung transplantation, 305–306
- organ preservation, 11
- organ sharing, 12
- pioneers, 2–4
- skin transplantation, 5–8
HIV. See Human immunodeficiency virus
HPV. See Human papillomavirus
HSV. See Human simplex virus
HTLV. See Human T-cell lymphotropic virus
Human herpes virus 8 (HHV8), infection in carcinogenesis after transplantation, 391
Human immunodeficiency virus (HIV), transplant recipients, 372–373
Human leukocyte antigen. See Major histocompatibility complex, 61
Human papillomavirus (HPV), infection in carcinosgenesis after transplantation, 391
Human T-cell lymphotropic virus (HTLV), transplant recipient infection, 372–373
Hume, David, 5
Hunter, John, 6
Hyperacute rejection (HAR)
antibody-mediated rejection mouse models, 112
overview, 41, 240–243
I
ICOS. See Inducible T-cell costimulator
IL-2. See Interleukin-2
IL-10. See Interleukin-10
IL-35. See Interleukin-35
Immune reconstitution syndrome (IRIS), 380
Immunosuppression, See also Costimulatory blockade; Opportunistic infection; specific drugs
cancer risks, 391–392
drug types
agents against B cells, plasma cells, and complement, 100–101
induction agents, 95–97
maintenance agents, 95, 97–100
novel drugs, 102–103
overview, 94–95
facial and hand transplantation, 363–364
heart transplantation, 320–321
historical perspective, 9–10, 13–14
lung transplantation, 313
mechanisms of action, 92–94
overview, 91
pancreas transplantation, 299
primate models
adhesion blockade, 132
lymphocyte depletion, 132–133
standard immunosuppression, 128–130
regenerative medicine and avoidance, 412–414
regulatory T-cell effects and adjunct therapy, 213–214
weaning for tolerance, 262
Inducible T-cell costimulator (ICOS), costimulatory blockade, 179–180
Infection, See Opportunistic infection
Interferon-γ (IFN-γ), acute rejection role, 52, 54
Interleukin-2 (IL-2)
receptor antagonists, 96
regulatory T-cell function and effects, 195, 264
Interleukin-10 (IL-10), regulatory T-cell function, 196
Interleukin-35 (IL-35), regulatory T-cell function, 196
Intravenous immunoglobulin (IVIG), immunosuppression therapy, 100–101

©2014 by Cold Spring Harbor Laboratory Press
IRF4, 199
IRIS. See Immune reconstitution syndrome
ISA247. See Voclosporin
Ischemia–reperfusion injury
 complement role, 77, 79
 mesenchymal stromal cell role, 227–228
 T-cell facilitation
 Toll-like receptor role, 82–84
Islet transplantation
 benefits, 293
 cell isolation and implantation, 298–299
 challenges, 300–301
 complement interference, 79–80
 diabetes, 25
 encapsulation in immune response avoidance, 249
 immunosuppression, 299
 living donation, 298
 monitoring of graft, 299–300
 morbidity, 300
 outcomes, 293–295, 297
 primate models, 127–128
IVIG. See Intravenous immunoglobulin

J
JAK. See Janus kinase
Janus kinase (JAK), inhibition of JAK3 for immunosuppression, 102, 130
Jensen, Carl, 2

K
KICAT. See Kidney-induced cardiac allograft induction
Kidney-induced cardiac allograft induction (KICAT)
 heart/kidney transplantation outcomes in humans, 329–335
 overview, 327
 primate models, 329
 regulatory T-cell studies
 coculture suppression assays, 328–329
 host thymectomy, 328
 major histocompatibility complex-mismatched swine, 329
 putative intragraft Tregs, 329
 roles
 donor antigen load, 327–328
 donor kidney irradiation, 328
 donor nephrectomy, 328
 survival rates, 409
 waiting list, 410–412
Kidney transplantation
 cancer management, 394–395
 cancer risks, 385
 complications
 early
 acute rejection, 344–346
 antibody-mediated rejection, 345–346
 delayed graft function, 343–344
 T-cell-mediated rejection, 345
 thrombotic microangiopathy, 347
 ureteral obstruction, 343
 urinary retention, 342
 urine leak, 342–343
 first year
 BK virus infection, 349–350
 recurrent kidney disease, 347–349
 late allograft failure, 350–352
 diabetes, 23–24
 elderly, 23
 heart/kidney transplantation outcomes, 329–335
 historical perspective, 4–5, 8, 11–13
 living donor assessment, 388
 mortality causes, 260
 mouse models of acute rejection, 110–111
 overview, 20–22, 341
 preemptive transplantation, 22–23
 pregnancy considerations, 352–353
 primate models, 126, 322
 quality of life, 25–26
 tolerance induction in mice
 alloimmune response, 324–325
 plasmacytoid dendritic cell hypothesis, 325
 renal tubular epithelial cell hypothesis, 325

L
LAS. See Lung Allocation Score
Lawler, Richard, 5
Leflunomide, immunosuppression maintenance, 100
LFA-1, adhesion blockade, 132, 266
LFA-3 (CD58), adhesion blockade, 132, 185–186
Lillie, Frank, 7
Liver transplantation
 contraindications, 277–278
 deceased-donor liver transplantation, 280–281
 historical perspective, 275–276
 indications, 276–277
 listing of patients, 280
 living-donor liver transplantation, 281–282
 lymphocyte depletion, 149
 overview, 25
 patient evaluation, 278–280
 posttransplant care, 283–284
 prospects, 284–285
 surgical techniques, 282–283
 timing and allocation, 280
 tolerance induction in mice
 alloimmune response, 325–326
 hematopoietic stem cell hypothesis, 326
 liver sinusoidal endothelial cell hypothesis, 326
 plasmacytoid dendritic cell hypothesis, 326
Lung Allocation Score (LAS), 26
Index

Lung transplantation
 bridge therapy, 307–308
 chronic lung allograft dysfunction, 313–314
 contraindications, 307
 donors
 donation after cardiac death, 309–310
 lung allocation, 26, 307
 lung evaluation, 310
 lung injury considerations, 309
 selection, 308–309
 heart/lung transplantation, 312
 historical perspective, 305–306
 immunosuppression, 313
 heart/lung transplantation, 312
 indications, 306
 organ preservation, 310–311
 outcomes, 313
 overview, 26
 pediatrics, 307
 postoperative care, 312–313
 surgical technique, 312
 unilateral versus bilateral, 311
 volume reduction, 311–312

Lymphocyte depletion
 clinical studies, 147–149
 complications
 infection, 149–150
 posttransplantation lymphoproliferative disease, 148, 150
 mouse models
 B-cell depletion, 143–144
 natural killer cell depletion, 144
 plasma cell depletion, 144
 T-cell depletion, 142–143
 overview, 141–142
 pig studies, 161–162
 primate models
 B-cell depletion, 146–147
 overview, 132–133
 T-cell depletion
 alemtuzumab, 146
 CD3 immunotoxin, 135
 miscellaneous agents, 146
 polyclonal antibody preparations, 144–145
 prospects for study, 151
 repopulation of cells, 150–151

M

Macrophage
 acute rejection role, 52–53, 245–247
 antibody-mediated rejection role, 53–54
 mesenchymal stromal cell modulation, 228–229
 therapeutic manipulation, 266

Major histocompatibility complex (MHC)
 allogeneic response, 30–31
 antibodies in chronic rejection, 61
 endothelial cells, 54
 histocompatibility typing historical perspective, 12–13
 monkeys, 125–126
 Mammalian target of rapamycin (mTOR)
 inhibitors and cancer risks, 392, 395
 regulatory T-cell regulation, 198
 MCP-1, See Monocyte chemoattractant protein-1
 Medawar, Peter, 4–8
 MEDI-507, See Siplizumab
 6-Mercaptopurine, history of use, 9–10
 Mesenchymal stromal cell (MSC)
 B-cell interactions, 231–232
 functional overview, 225–226
 immunogenicity of allogeneic cells, 232–233
 ischemia–reperfusion injury role, 227–228
 prospects for study, 234
 therapeutic application, 233–234
 tolerance studies
 dendritic cell modulation by mesenchymal stromal cells, 229–230
 macrophage modulation by mesenchymal stromal cells, 228–229
 suppression of allogeneic T-cell responses in rejection, 230–231
 MHC, See Major histocompatibility complex
 Mixed chimerism, See Chimerism
 MMF, See Mycophenolate mofetil
 Monocyte chemoattractant protein-1 (MCP-1), therapeutic targeting, 52–53
 Mouse models, transplantation
 acute rejection
 heart transplantation, 109–110
 kidney transplantation, 110–111
 skin transplantation, 108–109
 antibody-independent roles for T cells in transplantation, 114
 antibody-mediated rejection
 acute rejection, 112–113
 chronic rejection, 113–114
 hyperacute rejection, 112
 graft accommodation, 114–115
 limitations, 124
 lymphocyte depletion
 B-cell depletion, 143–144
 natural killer cell depletion, 144
 plasma cell depletion, 144
 T-cell depletion, 142–143
 prospects, 113
 rejection and organ-specific differences, 323
 spontaneous transplant models, 112–113
 tolerance induction, organ-specific differences
 kidney allografts

©2014 by Cold Spring Harbor Laboratory Press
alloimmune response, 324–325
plasmacytoid dendritic cell hypothesis, 325
renal tubular epithelial cell hypothesis, 325
liver allografts
alloimmune response, 325–326
hematopoietic stem cell hypothesis, 326
liver sinusoidal endothelial cell hypothesis, 326
plasmacytoid dendritic cell hypothesis, 326
overview, 323–324
tolerance induction studies
central tolerance with mixed chimerism, 115–116
lymphocyte depletion, 158–159
mixed chimerism, 160
peripheral tolerance with costimulatory blockade, 116
MSC. See Mesenchymal stromal cell
mTOR. See Mammalian target of rapamycin
Muromonab
immunosuppression induction, 97
safety, 149–150
Murphy, James B., 2–3
Murray, Joseph, 8–9
Mycophenolate mofetil (MMF)
immunosuppression maintenance, 98–99
primate model use, 128
Mycophenolate sodium, enteric coated, 98–99

N
Natural killer (NK) cell
acute rejection role, 52
alloimmune response, 32–33
allograft rejection role, 42–43, 245–246
depletion, 144
Neutrophil, rejection role, 245–246
NK cell. See Natural killer cell
NKG2D, acute rejection role, 52, 58

O
OKT3. See Muromonab
 Opportunistic infection
BK virus in kidney transplantation, 349–350
epidemiology
community exposures, 374
donor-derived infections, 372–374
exposure categories, 370, 372
nosocomial exposures, 374
pretransplant infections in recipients, 374
immunosuppression net state and risks, 372, 374–375
indirect effects of microbiome and immune function, 379
lymphocyte depletion complication, 349–350
management, 379–380
overview, 369–370
timeline
first month, 376–377
overview, 370–371, 375–376
six months, 377–378
six-to-twelve months, 38–379
Organ donation. See Ethics, transplantation; specific transplantations
Owen, Ray, 7
OX40 (CD134), costimulatory blockade, 181

P
Pancreas transplantation. See also Islet transplantation
benefits, 293
challenges, 300–301
contraindications, 296
diabetes, 24, 289–290
immunosuppression, 299
indications in diabetes, 290–293
living donation, 298
monitoring of graft, 299–300
morbidity, 300
organ donation, 297–298
outcomes, 293–295, 297
surgical technique, 298
Pancreas–kidney transplantation (PKT), early versus late, 22–23
PCP. See Pneumocystis pneumonia
PD1. See Programmed death 1 receptor
Pig models, transplantation
kidney-induced cardiac allograft induction
overview, 327
regulatory T-cell studies
coculture suppression assays, 328–329
host thymectomy, 328
major histocompatibility complex-mismatched swine, 329
putative intragraft Tregs, 329
roles
donor antigen load, 327–328
donor kidney irradiation, 328
donor nephrectomy, 328
tolerance induction
lymphocyte depletion, 161–162
mixed chimerism, 162
total body irradiation, 162
PKT. See Pancreas–kidney transplantation
Plasma cell, depletion, 144
Plasmacytoid dendritic cell. See Dendritic cell
Pneumocystis pneumonia (PCP), prophylaxis, 377
Pollock, George, 2
Posttransplantation lymphoproliferative disease (PTLD)
lymphocyte depletion association, 148, 150
risks in tolerance induction, 267
viral infection in carcinogenesis after transplantation, 390–391

© 2014 by Cold Spring Harbor Laboratory Press
Pregnancy, kidney transplantation considerations, 352–353
Primate models, transplantation
chimerism induction of allograft tolerance, 133–134, 163–164
costimulatory blockade
CD154 antibody, 182–183
CTLA-4 antibody, 182
facial transplantation, 128
genetics, 125–126
hand transplantation, 128–129
heart transplantation, 128
immunosuppression regimens
adhesion blockade, 132
lymphocyte depletion, 132–133
standard immunosuppression, 128–130
islet transplantation, 127–128
kidney transplantation, 126, 322
lung transplantation, 128
lymphocyte depletion
B-cell depletion, 146–147
overview, 132–133
T-cell depletion
alemtuzumab, 146
CD3 immunotoxin, 135
miscellaneous agents, 146
polyclonal antibody preparations, 144–145
overview, 125
perioperative care, 126
skin transplantation, 126–127
xenotransplantation, 128
Programmed death 1 receptor (PD1), costimulatory
blockade, 180, 185
PTLD. See Posttransplantation lymphoproliferative
disease
Rejection. See also Acute rejection; Allogeneic response;
Chronic rejection
adaptive immune response, 43, 243–245
facial and hand transplantation, 364
innate immune response, 42–43, 245–247
mechanisms
antibody-mediated rejection, 240–243
cell-mediated rejection, 243–247
overview, 226–227
organ-specific differences, 323
types, 41–42
Rituximab, immunosuppression therapy, 101
RM. See Regenerative medicine
S
Schone, Georg, 2
Siplizumab (MEDI-507), immunosuppression
therapy, 102
Sirolimus, immunosuppression maintenance, 99
Skin transplantation
acute rejection, 108–109
historical perspective, 5–8
primate models, 126–127

©2014 by Cold Spring Harbor Laboratory Press
Index

Sotrastaurin (AEB-071), immunosuppression therapy, 102
Starzl, Tom, 10–11, 13–14, 275–276

T
Tacrolimus
history of use, 13–14
immunosuppression maintenance, 98
TAK-779, chemokine blockade, 45
Tbet, 199
TBI. See Total body irradiation
T cell. See also Costimulatory blockade; Lymphocyte depletion; Regulatory T cell
acute rejection
activation, 54–56
memory T cells, 56
regulatory T cells, 55
alloimmune response
alloreactivity, 30–32
overview of rejection, 243–245
T cell receptor gene rearrangement, 31
types in transplanted organ recognition, 34–35
complement in cell-mediated graft rejection, 80–81
immunosuppressant drug mechanisms of action, 92–94
ischemia–reperfusion injury facilitation via Toll-like receptor, 84
kidney transplantation rejection, 345
mesenchymal stromal cell suppression of allogeneic T-cell responses in rejection, 230–231
regulatory cells other than regulatory T cells, 200–201
TGF-β. See Transforming growth factor-β
Thrombotic microangiopathy (TMA), kidney transplantation, 347
TLR. See Toll-like receptor
TMA. See Thrombotic microangiopathy
Tofacitinib (CP-690550)
immunosuppression therapy, 102
primate model use, 130
TOL101, immunosuppression therapy, 102–103
Tolerance induction. See also Costimulatory blockade; Regulatory T cell
B-cell tolerance induction, 248
clinical significance, 260–261
clinical studies of mixed chimerism, 164–166, 252–263
economic considerations, 267
history of study and definition, 249–260
immunosuppression weaning, 262
kidney-induced cardiac allograft induction. See Kidney-induced cardiac allograft induction
mechanism of mixed chimerism induction, 166–169
mesenchymal stromal cell studies
dendritic cell modulation by mesenchymal stromal cells, 229–230
macrophage modulation by mesenchymal stromal cells, 228–229
suppression of allogeneic T-cell responses in rejection, 230–231
mouse model studies
lymphocyte depletion, 158–159
mixed chimerism, 160
organ-specific differences in induction in mice
kidney allografts
alloimmune response, 324–325
plasmacytoid dendritic cell hypothesis, 325
renal tubular epithelial cell hypothesis, 325
liver allografts
alloimmune response, 325–326
hematopoietic stem cell hypothesis, 326
liver sinusoidal endothelial cell hypothesis, 326
plasmacytoid dendritic cell hypothesis, 326
overview, 323–324
pig studies
lymphocyte depletion, 161–162
mixed chimerism, 162
total body irradiation, 162
primate models
central tolerance with mixed chimerism, 115–116, 163–164
peripheral tolerance with costimulatory blockade, 116
prospects for study, 169–170, 268–269
regulatory T-cell therapy. See Regulatory T cell
spontaneous tolerance studies, 261–262
Toll-like receptor (TLR)
allogeneic response, 32
allograft rejection role, 85–86
complement pathway cross talk, 86
ischemia–reperfusion injury mediation, 82–84, 87
mesenchymal stromal cell expression, 227
types, ligands, and tissue distribution, 82–83
Total body irradiation (TBI)
immunosuppression in early transplantation, 8–9
pig studies, 162
Transforming growth factor-β (TGF-β), regulatory T-cell function, 196
Treg. See Regulatory T cell

U
Ullmann, Emerich, 3
Unger, Ernst, 3

V
Varicella-zoster virus (VZV), opportunistic infection, 372, 377–378
Voclosporin (ISA247), immunosuppression therapy, 102
Voronoy, Yu Yu, 4
VZV. See Varicella-zoster virus