Index
Age-related macular degeneration (AMD) (Continued)

CFI, 133, 135
CFR, 133
-genetic risk scores, 136–137
HTRA1, 129, 134
meta-analysis of studies, 134–135
PLEKHA1, 129
prospects, 135–136

highly penetrant alleles
ARMS2, 155–156
CFH, 155–156, 159–161
HTRA1, 155–156
overview, 155–157

rare variants
ABCA4, 161–162
C3, 158–159
C9, 159
candidate gene analysis, 157–158
CFI, 161
clinical subtypes, 164
exome chip analysis, 158
exome sequencing, 158

linkage analysis, 157
-predictive testing, 163–164
-prospects for study, 164–165
whole genome sequencing, 158

induced pluripotent stem cell modeling, 94–95
-risk factors, 110, 128–129, 170
RNA-Seq studies, 83–84
treatment
-neovascular disease
afliberept, 121
bevacizumab, 121
-combination therapy, 121
-macular surgery, 119–120
pegaptanib, 120
photocoagulation, 119
photodynamic therapy, 120–121
ranibizumab, 120–121
nonneovascular disease, 118–119

AGEs. See Advanced glycation end products
AHI1, genetic modifiers, 62, 64
AIPL1, Leber congenital amaurosis variants, 44
ALMS1
-Alström disease mutations, 101
-inherited retinal degeneration, 46
Alström disease
-clinical features, 101–102
-hearing loss, 100
AMD. See Age-related macular degeneration
Amyloid-β, drusen formation, 149
Angiostatin, gene therapy for age-related macular degeneration, 314–315

ARMS2
-age-related macular degeneration susceptibility studies, 129, 134, 156
-induced pluripotent stem cell modeling of mutation, 95

B
Bardet–Biedl syndrome (BBS)
-clinical features, 103
-gene mutations, 46
-genetic modifiers, 59, 62, 65
-retinitis pigmentosa, 6
Basal lamellar deposits (BLamD), age-related macular degeneration, 111
Bassen–Kornzweig syndrome (BKS), clinical features, 103
BBS. See Bardet–Biedl syndrome
BCD. See Bietti’s crystalline retinal dystrophy
BDNF. See Brain-derived neurotrophic factor
BEST1, induced pluripotent stem cell modeling of mutation, 94
β-Carotene, age-related macular degeneration management, 118
Bevacizumab, age-related macular degeneration management, 121
BF, age-related macular degeneration susceptibility studies, 132
Bietti’s crystalline retinal dystrophy (BCD), clinical features, 104
Bimatoprost, glaucoma management, 201
BKS. See Bassen–Kornzweig syndrome
BLamD. See Basal lamellar deposits
Brain-derived neurotrophic factor (BDNF), neuroprotection, 15
BrainPort, 18

C
CABP4, congenital stationary night blindness mutations, 10
CACD. See Central areolar choroidal dystrophy
CACNA1F, congenital stationary night blindness mutations, 10
CACNA2D4, congenital stationary night blindness mutations, 10
Candidate gene analysis
-age-related macular degeneration susceptibility studies, 157–158
-genetic modifier identification, 62
CAV1, glaucoma mutations, 211–212
CAV2, glaucoma mutations, 211–212
CCDC28B, genetic modifiers, 57–58, 62, 65
CCT. See Central corneal thickness
CDKN2BAS
-glucoma mutations, 211–213, 215
-therapeutic targeting, 255
Central areolar choroidal dystrophy (CACD), clinical features, 104
Central corneal thickness (CCT), glaucoma, 195, 213
CEP290
- genetic modifiers, 56, 64
- inherited retinal degeneration, 44, 46
- mouse model of Leber congenital amaurosis, 416
- mutation effects, 105–106
- pathogenicity of mutations, 50
- retinitis pigmentosa mutations, 6–7
CFB, age-related macular degeneration susceptibility studies, 134
CFD, age-related macular degeneration susceptibility studies, 133
CFG, age-related macular degeneration susceptibility studies, 133
CFH
- drusen formation, 149–150
- genetic modifiers, 59
- induced pluripotent stem cell modeling of mutation, 95
- ligand lipoxidation in drusen, 148
CFHR genes, age-related macular degeneration susceptibility studies, 132
CFI, age-related macular degeneration susceptibility studies, 133, 135, 161
CFP, age-related macular degeneration susceptibility studies, 133
Channel rhodopsin-2 (ChR2), optogenetics, 16–17
CHM
- choroideremia mutations, 10, 42
- gene therapy
 - clinical trials, 284–285
 - overview, 13, 275–277
 - prospects, 285
 - vector
 - design, 280–283
 - preclinical testing of AAV2 vector, 283–284
- protein. See REP1
Choroidal neovascularization (CNV), age-related macular degeneration, 113–116
Choroideremia
CHM gene therapy
- clinical trials, 284–285
- overview, 13, 275–277
- prospects, 285
- vector
 - design, 280–283
 - preclinical testing of AAV2 vector, 283–284
- clinical features, 9–10
- epidemiology, 277
- gene mutations, 275–278
- history of study, 277
molecular diagnosis, 277–278
REP1
- animal mutant studies, 279–280
- expression and function, 278–279
ChR2. See Channel rhodopsin-2
Ciliary neurotrophic factor (CNTF)
- gene therapy, 356
- neuroprotection, 15, 255–256, 376
9-cis-Retinal, Retinal degeneration management
CLN1, neuronal ceroid lipofuscinosis mutation, 103–104
CLN3
- mutation effects, 106
- neuronal ceroid lipofuscinosis mutation, 104
CLRNI, Usher syndrome mutations, 46
CNGA1, retinitis pigmentosa mutations, 5
CNGA3, achromatopsia mutations, 11, 46
CNGB3
- achromatopsia mutations, 11
- gene therapy, 13–14
CNTE. See Ciliary neurotrophic factor
CNV. See Choroidal neovascularization; Copy number variation
COL11A1, glaucoma mutations, 213
COL15A1, genetic testing, 252
COL18A1, genetic testing, 252
Color blindness
- developmental neural plasticity, 401
- gene therapy prospects, 410–411
- mouse trichromacy with M opsin knock-in, 408–409
- squirrel monkey trichromacy
 - biological basis of trichromacy in primates, 406–408
 - evolutionary mechanism of shift from dichromacy, 405, 409
 - gene therapy delivery, 409–410
 - L opsin, 402–405
 - neural networks in newly trichromatic primates, 406
 - neural plasticity, 405–406
 - photopigments, 402
Complement
- activation pathways, 127
- age-related macular degeneration
 - genome-wide association studies in susceptibility
 - ARMS2, 129, 134
 - BF, 132
 - C2, 132, 134
 - C3, 133, 135
 - C5, 133
 - C9, 135
 - CFB, 134
 - CFD, 133

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Complement (Continued)

CFG, 133
CFH, 129–134
CFHR genes, 132
CFI, 133, 135
CFR, 133

genetic risk scores, 136–137
HTRA1, 129, 134
meta-analysis of studies, 134–135
PLEKHA1, 129
prospects, 135–136

highly penetrant alleles
C3, 158–159
C9, 159
CFH, 155–156, 159–161
CFI, 161

glaucoma cascade, 238–239, 243–245
Cone–rod degenerations/dystrophies (CORDs), overview, 7
Congenital stationary night blindness (CSNB)
clinical features, 10
genetic mutations, 10
Copy number variation (CNV), inherited retinal degeneration, 45–46
CORDs. See Cone–rod degenerations/dystrophies
CRB1, Leber congenital amaurosis variants, 44
CRISPR/Cas system, genome editing, 420–421
CRX
Leber congenital amaurosis mutations, 7
retinitis pigmentosa mutations, 5
CSNB. See Congenital stationary night blindness
CYP1B1
genetic testing, 250–252
 glaucoma expression, 222
 glaucoma mutations, 208, 215
 therapeutic targeting, 255

D

DHA. See Docosahexaenoic acid
DNA microarrays, age-related macular degeneration gene expression studies, 174–176
Docosahexaenoic acid (DHA), retinal degeneration management, 11
Drusen
clinical features, 112, 141
formation, 142, 149
 proteomics studies in age-related macular degeneration
 oxidative protein modifications, 146–149
 prospects, 149–150
 qualitative studies, 142–143
 quantitative studies
 Bruch's membrane/choroid, 143–145
 mouse studies, 144, 146

E

Eculizimab, age-related macular degeneration management, 119
EFEMP1. See Extracellular matrix protein 1
ELAV. See Equine infectious anemia virus
Electroretinogram (ERG)
 achromatopsia findings, 11
 choroideremia findings, 10
 congenital stationary night blindness findings, 10
 Leber congenital amaurosis findings, 7
 retinitis pigmentosa findings, 2–3
 Stargardt disease findings, 8
 X-linked retinoschisis findings, 8, 334–335
Embryonic stem cell (ESC)
cell therapy, 17–18
gene therapy, 416
Endostatin, gene therapy for age-related macular degeneration, 314–315
ENDRA, genetic modifiers, 58
ENDRB, genetic modifiers, 60
Equine infectious anemia virus (EIAV), gene therapy vectors
 endostatin delivery, 315
 MYO7A delivery, 302–303
 overview, 14
ERAP1, genetic modifiers, 70
ERG. See Electroretinogram
ESC. See Embryonic stem cell
EST. See Expressed sequence tags
Estrogen, metabolism and glaucoma, 215
Exome chip analysis, age-related macular degeneration susceptibility studies, 158
Exome sequencing
 age-related macular degeneration susceptibility studies, 158
 next generation sequencing, 44–45
 Expressed sequence tags (EST), overview, 77
Extracellular matrix protein 1 (EFEMP1), 144, 146, 149

F

FAM161A, variant prioritization, 49
Fanconi anemia, gene therapy, 418
FBLN5, age-related macular degeneration susceptibility studies, 162
FCD. See Fuchs corneal dystrophy
FECH, genetic modifiers, 58
FGF. See Fibroblast growth factor
Fibroblast growth factor (FGF), FGF-2 neuroprotection, 15
Fluorescein angiography, choroidal neovascularization, 114
FOX1
 genetic testing, 250–252, 254
 glaucoma mutations, 209
FTO, genetic modifiers, 58

440

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
Fuchs corneal dystrophy (FCD), genetic modifiers, 60
Fundus autofluorescence
 retinitis pigmentosa findings, 2–3
 Stargardt disease findings, 8–9

G
Gene therapy. See also specific diseases and genes
 economic considerations, 432–433
 efficacy improvement, 429–431
 indications, 12–14
 limitations, 431–432
 outcome measures, 432
 prospects, 433
 success stories, 427–429
 vectors, 12–13
Genetic modifiers
 cloning strategies
 candidate gene approach, 62
 candidate locus association studies, 60, 62
 linkage analysis, 60
 mouse strain studies, 63–64
 overview, 60–61
 system-based candidates, 62
 transcriptome analysis, 62–63
 whole-exome data in toto, 63
identification challenges
 nongenetic factors, 59–60
 study availability, 59
overview, 55–56
properties
 allelic heterogeneity, 56
 locus sharing with disease driver, 58
 multiple interactions, 56–58
 variant frequency in general population, 58–59
prospects for study, 70–71
retinal degeneration studies
 humans, 64–65, 67–68
 mice, 66, 68–70
Genome editing, induced pluripotent stem cells, 419–421
Geographic atrophy, age-related macular degeneration, 112–114
GFAP. See Glial fibrillary acidic protein
Glaucoma
 etiology, 192–193
 gene expression studies
 anterior eye, 222
 ganglion cell central projecting targets, 228
 optic nerve, 225–228
 overview, 221–222
 prospects for study, 228–229
 retina, 222–225
 genetics
 adult-onset glaucoma
 normal-tension glaucoma, 212
 overview, 211–212
 primary open-angle glaucoma, 213
 pseudoexfoliation syndrome, 212–213
 qualitative ocular traits as risk factors, 213
 complex interactions, 213–214
 early-onset disease
 congenital glaucoma, 208–209
 developmental glaucoma, 209
 juvenile-onset primary open-angle
 glaucoma, 209–211
 normal-tension glaucoma, 211
 overview, 207–208
 estrogen metabolism, 215
 extracellular matrix metabolism, 215
 gene discovery rationale, 207
 prospects for study, 215
 transforming growth factor-β signaling, 215
 tumor necrosis factor-α signaling, 215
 genetic testing
 adult-onset glaucoma, 262
 approaches, 254
 early-onset glaucoma
 gene mutations, 250
 informed genetic counseling, 250–251
 presymptomatic risk assessment, 251
 surveillance and treatment plans, 251–252
 limitations, 254
 overview, 250
 recommendations, 252
 history taking, 193–194
 natural history, 191–192
 neuroinflammation and retinal ganglion cell loss
 astrocyte and microglia activation, 239–240
 beneficial and damaging effects, 239
 complement cascade, 238–239, 243–245
 immune response, 236
 inflammation signaling, 240–242
 leukocyte transendothelial migration, 238, 242–243
 overview, 235–236
 triggers, 236–238, 240
 novel therapy identification, 254–256
 ophthalmic examination, 194–198
 treatment
 clinical trials, 203–204
 laser therapy, 202
 medical therapy, 200–202
 overview, 197, 200
 surgery, 202, 204
 types, 192
 Glial fibrillary acidic protein (GFAP), glaucoma
 expression, 225, 228
 Glutathione S-transferase (GST), expression in age-
 related macular degeneration, 174
 GNAT2, achromatopsia mutations, 11
 Gonioscopy, glaucoma, 194–195
Index

GPR179, congenital stationary night blindness mutations, 10
GRM6, congenital stationary night blindness mutations, 10
GST. See Glutathione S-transferase
Guanylate cyclase. See GUCY2D
GUCY2D
gene therapy prospects, 327–328
Leber congenital amaurosis mutations
animal models
 GC1/GC2 double knockout mouse, 325–327
 GUCY1*B chicken, 321–323
 knockout mouse, 323–325
 guanylate cyclase functions, 319–320
 patient characterization, 320–321
GUCY2D, Leber congenital amaurosis variants, 44
Gyrate atrophy, OAT mutation, 42, 104

H
Hirschsprung disease, genetic modifiers, 58
HIV. See Human immunodeficiency virus
HK1, retinitis pigmentosa mutations, 35, 106
HMGN1
 age-related macular degeneration susceptibility studies, 163
 variant prioritization, 49
HTRA1
 age-related macular degeneration susceptibility studies, 129, 134, 155–156
 expression in age-related macular degeneration, 172
 induced pluripotent stem cell modeling of mutation, 95
Human immunodeficiency virus (HIV), gene therapy vector for MYO7A delivery, 302

I
IBD. See Identity by descent
Identity by descent (IBD), mapping, 45
IFRD1, genetic modifiers, 58
IMPDH1
 Leber congenital amaurosis mutations, 7
 retinitis pigmentosa mutations, 34–35
Indocyanine green angiopathy, polyploidal choroidal vasculopathy, 117
Induced pluripotent stem cell (iPSC)
cell therapy, 17–18, 91
differentiation, 92
gene therapy
 Fanconi anemia, 418
genome editing, 419–421
 promoters, 419
 prospects, 421–422
timing, 418
 vectors, 417–418
generation, 417
photoreceptor cell differentiation, 416–417
retinal disease modeling
 ABCA4 diseases, 92–93
 age-related macular degeneration, 94–95
 BEST1 mutation, 94
 MAK mutation, 93
 overview, 92
 prospects, 95–96
 USH2A mutation, 93–94
RNA-Seq studies, 83
iPSC. See Induced pluripotent stem cell
IQCB1
 genetic modifiers, 65
 inherited retinal degeneration, 46
IRX3, genetic modifiers, 58

J
Joubert syndrome
gene mutations, 46
retinitis pigmentosa, 6–7

L
Latanoprost, glaucoma management, 201
LCA. See Leber congenital amaurosis
Leber congenital amaurosis (LCA)
aminal models of RPGRIP1 mutation, 365–367
 clinical features, 7–8, 363
 epidemiology, 7
 gene therapy
genomic. See RPE65; RPGRIP1
 overview, 12–13
GUCY2D mutations
animal models
 GC1/GC2 double knockout mouse, 325–327
 GUCY1*B chicken, 321–323
 knockout mouse, 323–325
 gene therapy prospects, 327–328
 guanylate cyclase functions, 319–320
 patient characterization, 320–321
Leber’s hereditary optic neuropathy. See Primary optic neuropathy
Lentivirus gene therapy vectors. See also specific viruses
 ABCA4 delivery, 293–294
 MYO7A delivery, 302–303
Leukocyte transendothelial migration, glaucoma, 238, 242–243
Linkage analysis
 age-related macular degeneration susceptibility studies, 157
 genetic modifier identification, 60
 inherited retinal degeneration, 45–46
LMX1B, glaucoma mutations, 209

442

© 2015 by Cold Spring Harbor Laboratory Press. All rights reserved.
L opsin, gene therapy in dichromatic primates, 402–405

LOXL1
- genetic testing, 252
- glaucoma mutations, 213

LRIT3, congenital stationary night blindness mutations, 10

LTBP2
- genetic testing, 250–252
- glaucoma mutations, 208–209, 215

Lutein
- age-related macular degeneration management, 118
- retinal degeneration management, 11

M

MAK
- induced pluripotent stem cell modeling of mutation, 93
- variant prioritization, 49

MBL2, genetic modifiers, 58

MELAS, pigmentary retinopathy, 102

MERTK, gene therapy, 13

MFSD8, mutation effects, 106

Mitochondrial disease, pigmentary retinopathy, 102

Mtap1a, genetic modifiers, 66

MTTP, Bassen–Kornzweig syndrome mutation, 103

MVK, retinitis pigmentosa mutations, 46

MYO7A
- gene therapy
 - adeno-associated virus vectors
 - dual vectors, 304–305
 - single vectors, 303–304
 - equine infectious anemia virus vectors, 302–303
 - human immunodeficiency virus vectors, 302
 - prospects, 306, 429
 - splice variants, 305–306
 - inherited retinal degeneration, 46
 - mouse mutants, 299–302

MYOC
- genetic testing, 250–252
- glaucoma mutations, 210, 215
- therapeutic targeting, 255

N

Neuronal ceroid lipofuscinosis, clinical features and gene mutations, 103–104

Next generation sequencing (NGS). See also RNA-Seq autosomal dominant retinitis pigmentosa genetic testing, 28, 30–31, 36
- clinical applications in ophthalmology, 78–79
- exome sequencing, 44–45
- overview, 78
- targeted sequencing, 44

NGS. See Next generation sequencing

Nilvadipine, retinal degeneration management, 16

NOD-like receptors, glaucoma
- neuroinflammation role, 237

Normal-tension glaucoma. See Glaucoma

NPHe1, genetic modifiers, 62

NR2E3, retinitis pigmentosa mutations, 5

NRL, retinitis pigmentosa mutations, 5

NYX, congenital stationary night blindness mutations, 10

O

OAT, gyrate atrophy mutation, 42, 104

OCT. See Optical coherence tomography

OFD1, Joubert syndrome mutations, 46

OPAL, genetic testing, 252–254

OPTN
- genetic testing, 250–252
- glaucoma mutations, 211, 215

Optic nerve disorders. See Glaucoma; Primary optic neuropathy

Optical coherence tomography (OCT)
- achromatopsia findings, 11
- chorioidal neovascularization, 115–116
- congenital stationary night blindness findings, 10
- gene therapy studies, 430
- glaucoma, 197–198
- patient selection for retinal degeneration treatment, 18
- reticular pseudodrusen, 112
- retinitis pigmentosa findings, 2–3
- Stargardt disease findings, 8
- X-linked retinoschisis, 335

OPTN
- genetic testing, 250–252
- glaucoma mutations, 211, 215

Optogenetics, vision restoration, 16–17

OTUD4, genetic modifiers, 63

OTX2, Leber congenital amaurosis mutations, 7

P

Palmitoyl protein thioesterase (PPT), neuronal ceroid lipofuscinosis role, 103

PAX6
- genetic testing, 250–252
- glaucoma mutations, 209

PCV. See Polyploidal chorioidal vasculopathy

PDE-β, retinitis pigmentosa mutations, 5

PDE6A, retinitis pigmentosa mutations, 5

PDE6B, retinitis pigmentosa mutations, 5

PDE6C, achromatopsia mutations, 11

PDE6H, achromatopsia mutations, 11

PDT. See Photodynamic therapy

PDXD7, genetic modifiers, 65

PED. See Retinal pigment epithelial detachment

PEDE. See Pigment epithelium-derived factor

Pegaptanib, age-related macular degeneration management, 120
Index

Peripherin-2. See PRPH2
PEX7, Refsum disease mutation, 102
Photocoagulation, age-related macular degeneration management, 119
Photodynamic therapy (PDT), age-related macular degeneration management, 120–121
PHYH, Refsum disease mutation, 102
Pigment epithelium-derived factor (PEDF), gene therapy
age-related macular degeneration, 313–314
neuroprotection, 15
PRPH2 diseases, 356
PITX2
 genetic testing, 250–252
 glaucoma mutations, 209
PLEKHA1, age-related macular degeneration susceptibility studies, 129
PLINK, single nucleotide polymorphism analysis, 45
PLS3, genetic modifiers, 63
Polyploidal choroidal vasculopathy (PCV), age-related macular degeneration, 116–117
PPT. See Palmitoyl protein thioesterase
Primary open-angle glaucoma. See Glaucoma
Primary optic neuropathy
 genetic testing
 approaches, 254
 gene mutations, 252–253
 gene therapy candidate identification, 253
 informed genetic counseling, 253
 limitations, 254
 risk assessment, 253
 novel therapy identification, 254–256
 risk factor avoidance, 253
PRPF3, retinitis pigmentosa mutations, 35
PRPF31, retinitis pigmentosa mutations, 30–33, 35
PRPF4, retinitis pigmentosa mutations, 35
PRPF6, retinitis pigmentosa mutations, 35
PRPF8, retinitis pigmentosa mutations, 35
PRPH2
 animal models of mutations, 349–351
 autosomal-dominant retinitis pigmentosa mutations, 348–349
 central areolar choroidal dystrophy mutations, 104
 functional overview, 347–348
 gene therapy
 adeno-associated virus vectors, 352–353
 knockdown therapy, 355
 neuroprotection, 355–356
 plasmid DNA vectors, 353–355
 prospects, 357
 transgene replacement, 351–352
 vascular endothelial growth factor inhibitors, 356–357
 genetic modifiers, 61–62
 retinitis pigmentosa mutations, 5, 31, 33, 35
Pseudoexfoliation syndrome. See Glaucoma

R
Ranibizumab, age-related macular degeneration management, 120–121
RAP. See Retinal angiomatic proliferation
RdCVF. See Rod-derived cone viability factor
RDH12, retinitis pigmentosa mutations, 28
RDS, genetic modifiers, 64
Refsum disease
 clinical features, 102
 hearing loss, 100
REP1
 animal mutant studies, 279–280
 expression and function, 278–279
 functional overview, 10
 gene. See CHM
RET, genetic modifiers, 60, 62
Reticular pseudodrusen. See Drusen
Retina, structure, 90
Retinal angiomatous proliferation (RAP), age-related macular degeneration, 117
Retinal pigment epithelial detachment (PED), choroidal neovascularization, 114–115
Retinal pigment epithelium (RPE), hyperplasia, 116
Retinitis pigmentosa (RP)
 autosomal dominant disease gene mutations. See also PRPH2; RHO
discovery, 28, 30–31
dominant-recessive acting mutations, 35
genetic testing, 28, 30–31, 36
overview, 27–28
pathogenicity, 31–32
prevalence of mutations, 32–35
protein functions, 35
reconciling diagnosis, family history, and molecular findings, 35–36
table, 29–30
classification, 1–2
clinical features, 2–3, 27
epidemiology, 3–4, 27
genetics, 4–5
syndromic/systemic forms, 5–7
treatment
 alternative pharmacotherapy, 15–16
 cell therapy, 17–18
 neuroprotection, 15
 overview, 11
 retinal prosthetics, 16
Retinoschisin. See RS1
RHO
gene therapy
 adeno-associated virus specificity, 389
 clinical prospects, 395–396
 expression levels, 389–390
 photoreceptor rescue, 390–392
Index

RH0 (Continued)

rationale, 388–389
RNA replacement, 392–395
vectors, 389
zinc-finger repressors, 392
genomics studies, 43
retinitis pigmentosa mutations, 4–5, 31, 55, 387–388

RNA-Seq
age-related macular degeneration gene expression studies, 174–176
bioinformatics
alignment of data, 80
differential expression analysis, 80–82
inherited retinal disease models, 82–83
mechanisms, 83–84
next generation library preparation, 79–80
overview, 78–79
retina transcripts, 82

RNF216, genetic modifiers, 63

Rod-derived cone viability factor (RdCVF), 15

ROM1

gene therapy
animal models, 415
clinical trials
outcome measures, 268
Phase I/II trials, 260, 263–265
Phase II, 265
Phase III, 265
table, 261–262
overview, 259–260, 427–428, 430–431
prevention of retina degradation, 266–267
prospects, 269–270
subretinal injection safety, 267–268

RPE. See Retinal pigment epithelium

RPE65

functional overview, 260–261
gene therapy
animal models, 415
clinical trials
outcome measures, 268
Phase I/II trials, 260, 263–265
Phase II, 265
Phase III, 265
table, 261–262
overview, 259–260, 427–428, 430–431
prevention of retina degradation, 266–267
prospects, 269–270
subretinal injection safety, 267–268

genetic modifiers, 68
retinitis pigmentosa mutations, 28

RPGR
functional overview, 372
mutation effects, 105
retinitis pigmentosa mutations, 32–35
X-linked retinoschisis
animal models
dog, 373–376
mouse, 373
gene therapy
dog studies, 376–383
onset prevention, 377
photoreceptor rescue, 377–383

prospects, 383
vectors, 376
mutations and phenotypes, 371–373
neuroprotection studies, 376

RPGRIP1
animal models of mutation, 365–367
functional overview, 364–365
genre therapy prospects, 367–368
Leber congenital amaurosis mutations, 363

RPGRIP1L, genetic modifiers, 59, 64–65

RPIL1, variant prioritization, 49

RSL
developmental expression, 336
functional overview, 335
genre therapy
administration route, 339, 341
efficacy, 341–343
overview, 14
prospects, 343
vectors, 337–339
mouse mutants, 336–337, 340

X-linked retinoschisis mutations, 8, 335–336

S

SAA. See Serum Amyloid A
SAG, retinitis pigmentosa mutations, 5
SAGE. See Serial analysis of gene expression
SCA. See Spinocerebellar ataxia
Senior–Løken syndrome

gene mutations, 46
retinitis pigmentosa, 5
Serial analysis of gene expression (SAGE), overview, 77
Serum Amyloid A (SAA), glaucoma expression, 224
sFL T01, gene therapy for age-related macular degeneration, 311–312

SIX1, glaucoma mutations, 211–213

SIX6, glaucoma mutations, 211–213

SMA. See Spinal muscle atrophy

Spinal muscle atrophy (SMA), genetic modifiers, 63
Spinocerebellar ataxia (SCA), genetic modifiers in SCA1, 62

Stargardt disease

ABCA4 mutations, 9, 42, 289
clinical features, 8–9
genre therapy. See ABCA4
STAT3, glaucoma expression, 224

T

TALENs, genome editing, 420–421

TBK1

gene therapy testing, 250–252

glaucoma mutations, 211, 215
Index

TCF8, genetic modifiers, 60
TGF-β. See Transforming growth factor-β
Timolol, glaucoma management, 201
TLRs. See Toll-like receptors
TNF-α. See Tumor necrosis factor-α
Toll-like receptors (TLRs), glaucoma neuroinflammation role, 236–237, 240–241
Trabeculectomy, glaucoma management, 202, 204
Trabeculoplasty, glaucoma management, 202
Transcriptomics. See also RNA-Seq
 genetic modifier identification, 62–63
 inherited retinal degeneration, 47
Transforming growth factor-β (TGF-β)
 glaucoma expression, 222, 227, 229
 signaling and glaucoma, 215
Travoprost, glaucoma management, 201
TRPM1, congenital stationary night blindness
 mutations, 10
TSPAN12, linkage studies, 45
Tumor necrosis factor-α (TNF-α)
 glaucoma expression, 225, 228–229
 signaling and glaucoma, 215, 241

U
USH2A, induced pluripotent stem cell modeling
 of mutation, 93–94
Usher syndrome
 gene mutations, 46
 genetic modifiers, 65
 hearing loss, 100–101
 mouse models, 299–302
MYO7A gene therapy. See MYO7A
 retinitis pigmentosa, 5–6
 types, 100

V
Valproic acid, retinal degeneration
 management, 15
Vascular endothelial growth factor (VEGF)
 inhibitor gene therapy
 age-related macular degeneration, 310–312
 PRPH2 diseases, 356–357
 inhibitor therapy for age-related macular
 degeneration, 120–121
VEGF. See Vascular endothelial growth factor
Vitamin A, retinal degeneration management, 11

W
Whole genome sequencing
 age-related macular degeneration susceptibility
 studies, 158
 inherited retinal degeneration, 47

X
X-linked retinoschisis (XLRS)
 clinical features, 8, 333–335
 epidemiology, 8
 gene and cell biology, 335, 371
 gene therapy. See RPGR; RS1
 genetic modifiers, 68
 management, 335
 mouse models, 336–337, 340
 XLPR dog models. See RPGR
 XLRS. See X-linked retinoschisis

Z
ZNF408, linkage studies, 45