Index

A
ACC. See Adrenocortical carcinoma
ACD. See Adrenocortical dysplasia
Acute lymphoblastic leukemia (ALL)
 hypodiploid leukemia
 diagnosis, 439–441
 genetics, 441–442
 models, 445–448
 TP53 alterations, 442–445
 overview, 437–438
 TP53 alterations, 438–439
Acute promyelocytic leukemia (APL)
 PML/RARA fusion, 417–418
 treatment
 arsenic trioxide, 418–419
 normal PML in therapy response, 419–421
 p53 as effector, 419, 422–423
 retinoic acid, 418–419
ADORA2B, 104
Adrenocortical carcinoma (ACC), 301–303
Adrenocortical dysplasia (ACD), TPP1 mutations, 165
Adult stem cell, p53 in differentiation, 5
Aging. See also Cellular senescence
genomic instability, 134
telomere shortening. See Telomere
Aiolos, 441–442
AKT, 213–214, 386
Aldehyde dehydrogenase, p53 in REDOX
 management, 223
ALL. See Acute lymphoblastic leukemia
AMG-232, MDM2–p53 interaction therapeutic targeting, 398–400
AMP-activated protein kinase (AMPK), p53 studies
 metabolic sensing, 212–213
 regulation, 3
 regulation of metabolism, 219–220
AMPK. See AMP-activated protein kinase
Angiogenesis, gain-of-function p53 mutations, 318–319
Anticipation, Li–Fraumeni syndrome, 356–357
APC, 343, 456
APE1/Ref-1, 115
APL. See Acute promyelocytic leukemia
APOBEC, 288–289, 409
Apoptosis
 gain-of-function p53 mutations and protection in cancer, 319–320
 p53 studies
 binding proteins, 146
 binding site affinity and apoptosis threshold, 146–147
 cell type and oncogene activity in apoptosis sensitivity, 147
 functional overview, 141–142
 induction mechanism, 144
 mitochondrial function, 145
 posttranslational modifications in apoptosis regulation, 145–146
 therapeutic induction, 150–151
 tumor suppression, 100–101, 147–149
ARE, 129, 163, 340
ARID1A, p53 interactions, 76
Arsenic trioxide, acute promyelocytic leukemia management, 418–419
Asparagine synthetase, mutant p53 target gene, 81, 83
ASPP proteins, apoptosis regulation, 146
ATM, 120, 129, 163, 175, 489
ATR, 120, 129, 163, 489
ATRX, 308
Aurora kinase, 239
Autophagy
 p53 studies
 autophagy-related gene activation, 192–193
 nutrient stress response, 220
 overview, 3–4
 suppression by autophagy
 cancer promotion through p53 repression, 189–192
 mechanisms, 192
 overview, 188–189
 tumor suppression, 104
 regulation, 187–188
Axl
 mutant p53 target gene, 84
 p53 mutation effects on expression, 74
B
BAF, p53 interactions, 76
BAP28, 200
Base excision repair (BER), p53 role, 114–116
BAX
 apoptosis mediation, 101
 p53 transactivation, 2
Bcl-2, inhibition by p53, 129
BER. See Base excision repair

© 2016 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

BLM, 120
BNIP3, 225
BOP1, 201
Braf, 191–192
Brazilian TP53 mutation. See p.R337H
BRCA1, 408, 422, 454
BRCA2, 408, 454
BRD7, p53 interactions, 76
Breast cancer
p53
isoforms, 38
status in DNA-damaging therapies, 421–422
TP53 mutations
basal-like subtype, 408–409
molecular subtypes of cancer, 407–408
overview, 70, 244, 292–293, 407, 456
prognostic and predictive value, 409–411
prospects for study, 411–412
BRG1, p53 interactions, 76

C
Cancer Genome Atlas. See TCGA
Cancer stem cell. See Stem cell
Carboxy-terminal domain (CTD), structure, 17–18, 22, 71–72
CARM1, p53 transactivation role, 77
Cartilage hair hypoplasia (CHH), 205
CBP. See CREB-binding protein
CD3, therapeutic targeting, 484
CDK1, mutant p53 target gene, 82
CDKN1a
cellular senescence role, 174
p53 tumor suppression role, 102
CDKN2A, single nucleotide polymorphisms, 476
Cell cycle
gain-of-function p53 mutations and deregulation, 315
p53 studies
arrest mechanism, 142
cell fate decision between arrest and senescence, 143–144
cellular senescence induction, 143
checkpoint functions, 142–143
cycle regulation and DNA damage repair, 101–103
functional overview, 141–142
therapeutic induction, 150–151
tumor suppression role of arrest, 147–149
therapeutic targeting of checkpoints, 489–490
Cellular senescence
cell fate decision between cycle arrest and senescence, 143–144
chemotherapy response prognosis, 181–182
fibroblast studies, 173–174
inflammation, 266–269
markers, 176
p53 studies
chemotherapy induction, 179–181
induction, 143
oncogene-induced senescence, 176–178
pathway, 174–176
tumor suppression, 103, 178–179
wild-type p53 tumors, 179
telomere shortening. See Telomere
CHH. See Cartilage hair hypoplasia
Chk1, 129
Chk2, 129
CHOP, 199
Chromatin remodeling, p53 transactivation role, 6
Chronic lymphocytic leukemia (CLL), TP53 mutations, 460
CLL. See Chronic lymphocytic leukemia
c-Myc
mutant p53 target gene, 83
p53 mutation effects on expression, 73–74
CNV. See Copy number variation
Colon cancer, TP53 mutations, 70, 244
COP1, cancer alterations, 336, 338–339
Copy number variation (CNV), p53 knockout in germline totipotent stem cells, 236–237
CREB-binding protein (CBP), p53 transactivation domain interactions, 60, 62, 76
CRISPR, mutant p53 targeting, 486
CTC1, 167
CTD. See Carboxy-terminal domain
CTLA4, therapeutic targeting, 484
CTNNB1, 428
CXCL1, p53 mutation effects on expression, 73–74

D
DBA. See Diamond–Blackfan anemia
DBD. See DNA-binding domain
DDB1, 114
DDB2, 114
Diamond–Blackfan anemia (DBA), 204
DKC1, 167
DNA damage repair. See also Genome stability
Caenorhabditis checkpoints, 111–112
p53 studies
base excision repair, 114–116
double-strand break repair, 117–120
homologous recombination, 119–120
mismatch repair, 116–117
nonhomologous end joining, 117–119
nucleotide excision repair, 113–114
RecQ helicase interactions, 120–121
tumor suppression, 101–103
therapeutic targeting of DNA damage, 489–490
DNA methylation. See Epigenetics
DNA polymerase β, base excision repair, 116

© 2016 by Cold Spring Harbor Laboratory Press. All rights reserved.
DNA-binding domain (DBD)
communication with oligomerization region, 22–24
mutations, 17, 22, 69–70
structure, 17
DRAM, 192
Dyskeratosis congenita, telomerase defects, 158, 166–168

E
E2F1, 143, 147
EBV. See Epstein–Barr virus
EGRI
mutant p53 target gene, 84
p53 mutation effects on expression, 73
Embryonic stem cell (ESC)
gain-of-function p53 mutation expression effects, 322
p53 in differentiation, 4–5
EMT. See Epithelial-to-mesenchymal transition
Epidermal growth factor receptor, mutant p53 target
gene, 80–81, 83
Epigenetics
germline totipotent stem cells, 236
p53 in epigenetic regulation of genome, 247–248
Epithelial-to-mesenchymal transition (EMT)
gain-of-function p53 mutations and cancer, 316–317
p53 studies, 2–3, 8
Epstein–Barr virus (EBV), oncogenes in p53 pathway
inactivation, 341
ESC. See Embryonic stem cell
Ets-2, mutant p53 interactions, 79–80
Exposome, TP53 mutation landscape, 455

F
FAS, apoptosis mediation, 100
Fatty acid oxidation, p53 regulation of metabolism, 218

G
Gain-of-function p53 mutations
cancer studies
angiogenesis, 318–319
apoptosis protection, 319–320
cancer stem cells, 320–322
cell proliferation, 316
chronic inflammation, 317–318
epithelial-to-mesenchymal transition, 316–317
genomic instability, 319
invasion, 316–317
metabolic shift, 318
metastasis, 317
multidrug resistance, 320
prospects for study, 327–328
therapeutic targeting, 322–323, 485–486
cell cycle deregulation, 315
clinical significance, 78–79
molecular mechanisms, 314–315
mouse models, 78
mut-p53 GOF concept evolution, 312
mutation distribution, 313
overview, 311–312, 406–407
synthetic lethality, 491–492
variability in gain-of-function, 312–314
Galectin-3, mutant p53 target gene, 83
GCN5, p53 transactivation domain interactions, 60
Genome sequencing
TP53 haplotype impact in cancer, 284–286
TP53 mutations
breast cancer, 292–293
clinical classification, 290–292
functional diversity of mutations, 289–290
historical perspective, 279–280
lung cancer, 293–295
next generation sequencing, 285–289
patterns as signatures of mutagenic processes, 285–289
prospects for study, 295–296
somatic mutation spectrum generation, 281–286
status assessment in cancer, 453–454
Genome stability. See also DNA damage repair
aging and genomic instability, 134
cancer
genomic instability, 127–128
p53 inactivation, 134–135
DNA damage and p53 activation, 129–130
gain-of-function p53 mutations and genomic
instability, 319
Li–Fraumeni syndrome and genomic instability, 356–357
microRNA and genomic instability, 134
p53-induced pathways for instability prevention, 128–129
p73 role, 132–133
ploidy alterations and p53 regulation, 130–132
prospects for study, 135–136
GLI2, 428, 432
Glucose
p53 regulation of metabolism, 214–220
tolerance and p53 studies, 4
Glucose transporters (GLUTs), p53 studies
regulation of metabolism, 217
tumor suppression, 103
GLUTs. See Glucose transporters
GRO1, mutant p53 target gene, 80, 84
Gutaminase, p53 regulation of metabolism, 217

H
H2AX, 129
HAUSP, MDM2 regulation in cancer, 340–341
Index

Helios, 441–442
HIF-1, 223–225
HIPK2, 146
HMGB1, p53 interactions, 24–25, 63
Homologous recombination (HR), p53 role, 119–120
Hotspot mutations, TP53, 71
HPV. See Human papilloma virus
HR. See Homologous recombination
Human papilloma virus (HPV), oncogenes in p53 pathway inactivation, 341
Hypoxia, p53 studies, 223–225

I
Id2, p53 mutation effects on expression, 73
Ikaros, 441–442
Imatinib, 491
Induced pluripotent stem cell (iPSC), gain-of-function p53 mutation expression effects, 321–322
Inflammation
acute versus chronic, 256
cancer and chronic inflammation association studies, 257–258
cellular mechanisms, 260
cellular senescence, 266–269
p53 knockout mouse, 262
nuclear factor-κB mutual negative regulation, 263–266
suppression by inflammation, 258–259
suppression of inflammation, 259–263
therapeutic targeting, 269–270
prospects for study, 270–271
gain-of-function p53 mutations, chronic inflammation, and cancer, 317–318
overview, 255–256
pathways, 256
INK4A, 163
iPSC. See Induced pluripotent stem cell
Isoforms. See p53 isoforms

K
Kaposi’s sarcoma, oncogenes in p53 pathway inactivation, 341
KITLG, single nucleotide polymorphisms, 477
KRAS, 343

L
Leukemia inhibitory factor (LIF), p53 in reproductive function, 21
LFS. See Li–Fraumeni syndrome
LIF. See Leukemia inhibitory factor
Li–Fraumeni syndrome (LFS), 241–242, 249
age of onset, 354
anticipation and genomic instability, 356–357
Brazilian TP53 mutation. See p.R337H
cancer risk patterns, 355
clinical definition, 351–352
genetic modifiers, 356
genetic testing and counseling, 359–360
molecular pathogenesis, 352–353
mouse models, 357–358
primary tumors and secondary cancers, 354–355
sex distribution, 353–354
surveillance, 358–359
TP53 mutation and tumor associations, 354, 454
tumor spectrum, 353
LIPIN1, induction by p53, 4
Liposarcoma, p53 pathway inactivation, 343
Liquid biopsy, TP53 sequencing, 459
Lung cancer
autophagy promotion through p53 repression, 190–191
p53 pathway inactivation, 342
TP53 mutations, 293–295

M
Malic enzyme (ME), p53 regulation of metabolism, 217
MCT. See Monocarboxylate transporter
MD. See Molecular dynamics
MDM2
cancer
amplification, 364–367
overexpression, 366–374
overview of alterations, 333–335
prospects for study, 401–402
regulators
ARF, 130, 340
HAUSP, 340–341
WIP1, 341
therapeutic targeting, 150–151, 344–345, 396–402, 484–485
cell cycle regulation, 143–144
genomic instability role, 128, 130–131, 133–134
history of study, 363–364
Li–Fraumeni syndrome variants, 356
p53 transactivation domain interactions, 61–62
ribosomal protein binding characterization, 202–203
overview, 198–199
single nucleotide polymorphisms and cancer, 474–475
MDM4
cancer
alterations, 336–337
therapeutic targeting, 345, 484–485
domains
acidic domain, 382

© 2016 by Cold Spring Harbor Laboratory Press. All rights reserved.
p53-associating domain, 380–381
RING domain, 381
zinc-finger domain, 381–382
functional overview, 335–336
history of study, 379–380
mouse studies, 382–383
single nucleotide polymorphisms and cancer, 475–476
MDMX. See also MDM4
cancer
therapeutic targeting, 150–151, 387–388
upregulation, 383–386
domains
acidic domain, 382
p53-associating domain, 380–381
RING domain, 381
zinc-finger domain, 381–382
genomic instability role, 133–134
history of study, 379–380
mouse studies, 382–383
p53 transactivation domain interactions, 61
MDR1
gain-of-function p53 mutations and multidrug resistance, 320
mutant p53 target gene, 80, 82
p53 mutation effects on expression, 73
ME. See Malic enzyme
Mediator complex
mutant p53 interactions, 80
p53 transactivation role, 76–77
Medulloblastoma
animal models, 431–432
molecular subgroups, 427–428
overview, 427
p53
 genomic landscape of mutated medulloblastoma, 430–431
somatic and germline aberrations, 428–430
therapeutic targeting, 432
Mesenchymal stem cell (MSC), p53 in differentiation, 5
Metabolic syndrome, nutrient excess and p53, 220–221
Metastasis, gain-of-function p53 mutations, 317
MI-77301, MDM2–p53 interaction therapeutic targeting, 398–399, 401
MI-888, MDM2–p53 interaction therapeutic targeting, 398–399
MicroRNA
 epithelial-to-mesenchymal transition role, 2
 genomics instability role, 134
MIRA-1, 487
Mismatch repair (MMR), p53 role, 116–117
Mitochondrial outer membrane permeabilization (MOMP), p53 induction, 144–145
Miz-1, 199
MMP3, p53 mutation effects on expression, 74
MMR. See Mismatch repair
Molecular dynamics (MD)
p53 domain interaction simulations, 22–24
protein–protein interactions, 24–25
MOMP. See Mitochondrial outer membrane permeabilization
Monocarboxylate transporter (MCT), p53 regulation of metabolism, 218
MSC. See Mesenchymal stem cell
MSH2, 117
MTOR
 apoptosis repression, 188
 cellular senescence and inflammation, 267–268
p53 studies
 metabolic sensing, 212, 214
 regulation, 3
 regulation of metabolism, 215, 218–210
Mut-p53 GOF. See Gain-of-function p53 mutations
MYCN, 428–430

N
NER. See Nucleotide excision repair
Next generation sequencing. See Genome sequencing
NF-κB, See Nuclear factor-κB
NF-Y, mutant p53 interactions, 79
NF1, 441
NHEJ. See Nonhomologous end joining
NHP2, 167
NIX, 225
Nonhomologous end joining (NHEJ), p53 role, 117–119
NOXA
 apoptosis mediation, 100–101
p53 transactivation, 2, 70
NSC59984, 487, 492
Nuclear factor-κB (NF-κB)
 activation and inflammation, 256–257
 cellular senescence role, 143–144
p53
 mutation effects on expression, 73, 79, 84
 mutual negative regulation, 263–266
 suppression by inflammation, 258–259
 therapeutic targeting, 269–270
Nucleolar stress, p53 surveillance, 199–202
Nucleotide excision repair (NER), p53 role, 113–114
Nutlins, MDM2–p53 interaction therapeutic targeting, 397–399
NVP-GM097, MDM2–p53 interaction therapeutic targeting, 398, 400
OGG1, 115–116
Oligomerization region
 communication with DNA-binding domain, 22–24
 structure, 17, 71
Oncogene-induced senescence. See Cellular senescence

Ovarian cancer
- p53 isoforms, 38
- pathway inactivation, 342–343
- TP53 mutations
 - high-grade serous ovarian cancer, 408–409
 - molecular subtypes of cancer, 407–408
 - prognostic and predictive value, 409–411
 - prospects for study, 411–412

Oxidative stress
- p53 studies, 3, 221–223
- therapeutic targeting, 490–491

P
- p21
 - apoptosis inhibition, 2
 - cell cycle arrest, 142
 - cellular senescence role, 175–176
- p53
 - regulation in induced pluripotent stem cells, 238–239
 - transactivation mechanism, 72, 75, 77
- p53 isoforms
 - human isoforms
 - biological activities, 43–45
 - clinical relevance, 37–38
 - regulation of expression and activity, 43
 - types, 33–35
 - prospects for study, 44, 46
 - splice variants, 31–33
 - tools for function studies
 - animal models
 - Drosophila, 40–41
 - mouse, 41–43
 - zebrafish, 38–40
 - antibodies, 36–37
 - quantitative reverse transcription polymerase chain reaction, 35
 - small interfering RNA, 35–36
 - transactivation functions, 7
 - tumor expression and outcomes, 458–459
- p63
 - functional overview, 18–21
 - mutant p53 interactions, 79
 - structure, 18–19
- p73
 - functional overview, 18–21
 - genomic stability role, 132–133
 - mutant p53 interactions, 80
 - structure, 18–19
- p300
 - mutant p53 interactions, 80
 - p53 transactivation domain interactions, 60, 62, 77

PAI-1, 128
Palb2, 189
Pancreatic cancer, autophagy promotion through p53 repression, 191–192
PARN, 167
PARP, inhibitors, 484, 488
Patient-derived tumor xenograft (PDTX), cancer therapy testing, 461
PC4, p53 transactivation domain interactions, 63
PCNA
 - mutant p53 target gene, 80, 82
 - p21 interactions, 142
PD1, therapeutic targeting, 484
PDGFR, mutant p53 target gene, 84
PDTX. See Patient-derived tumor xenograft
PFK. See Phosphofructokinase
Phosphofructokinase (PFK), p53 regulation of metabolism, 215, 217
PIG3, 223
PIP4K2, 490
PIRH2, cancer alterations, 336, 338–339
PML, 128
POT1, 160, 163, 165
p.R337H
 - adrenocortical carcinoma, 301–303
 - clinical considerations, 306–308
 - demography, 304–305
 - functional effects, 305–306
 - genetic diversity of alleles, 303–304
 - genotype–phenotype correlation, 355–356
 - history of study, 301–303
 - prospects for study, 308
PRIMA-1, 327, 487
PRIMA-1MET, 327
PRMT1, p53 transactivation role, 77
Proline-rich region (PRR), structure, 17, 71
PRR. See Proline-rich region
PTEN, 246, 456
PUMA
 - apoptosis mediation, 100–101
 - p53 transactivation, 2, 70
Pyruvate dehydrogenase kinase, p53 regulation of metabolism, 217

R
- RAD51, 119
- Rap1, 160
- Rb, p53 pathway interactions, 143–144
- RBI, 456
- Reactive oxygen species. See Oxidative stress
- RecQ, p53 interactions, 120–121
- Replication protein A (RPA), p53 transactivation domain interactions, 62–63
- Retinoic acid, acute promyelocytic leukemia management, 418–419
Ribosomal proteins
 extraribosomal functions, 198–199
 MDM2 binding
 characterization, 202–203
 overview, 198–199
 p53 surveillance of nucleolar stress, 199–202
 prospects for study, 205–206
 ribosome biogenesis
 diseases, 204–205
 overview, 198

RITA, 487
RNA polymerase I, p53 surveillance of nucleolar stress, 199–200
RNA polymerase II, p53 transactivation role, 6
RPA. See Replication protein A
RPLs. See Ribosomal proteins
RTEL, 167

S
SAH–p53–8, 387
Schwachman–Diamond syndrome (SDS), 204–205
SDS. See Schwachman–Diamond syndrome
Senescence. See Cellular senescence
SHH, medulloblastoma defects, 428–432
Single nucleotide polymorphisms (SNPs)
 CDKN2A, 476
 KITLG, 477
 MDM2 and cancer, 474–475
 MDM4 and cancer, 475–476
 prospects for study in p53 pathway, 477–478
 TP53
 frequency of polymorphisms, 470
 P72R and cancer, 470–473
 P72S and cancer, 473–474
Smad, mutant p53 interactions, 79–80
SNCAIP, 428
SNF5, p53 interactions, 76
SNPs. See Single nucleotide polymorphisms
Sp1, mutant p53 interactions, 79–80
SREBP1, p53 regulation of metabolism, 218
SREBP1c, repression by p53, 4
Stathmin, mutant p53 target gene, 84
Stem cell. See also specific cells
cancer-derived stem cells, 233–235
gain-of-function p53 mutations and cancer stem cells, 320–322
p53 studies
cancer stem cells, 239–240, 459
epigenetic regulation of genome, 247–248

germline mutation studies, 241–247
germline totipotent stem cells, 235–237
induced pluripotent stem cells, 238–239
maintenance of stem cells, 240–241
prospects for study, 248–250
self-renewal and tissue regeneration, 237–238
pluripotency, 231–232
teratocarcinoma, 235
tissue-specific cells, 232–233
totipotency, 231–232
Synthetic lethality, tumor vulnerability targeting, 484, 488, 490–492

T
TAD. See Transactivation domain
TAF9, p53 transactivation domain interactions, 60
TCAB1, 167
TCS. See Teacher–Collins syndrome
Teacher–Collins syndrome (TCS), 204
Telomerase reverse transcriptase (TERT)
 knockout mice, 162
 mutations, 158
Telomere
 DNA damage at uncapped telomeres in p53 activation, 162
 p53
dysfunction and translocations, cancer, and aneuploidy, 164–166
telomere interplay in vertebrate animal models, 161–162
shortening
carcinogenesis inhibition, 163–164
 overview, 157–158
 senescence role, 160–161
 structure and function, 159–160
telomerase
 cancer upregulation, 168
dyskeratosis congenita defects, 158, 166–168
TERT. See Telomerase reverse transcriptase
TGF-β. See Transforming growth factor-β
Thioredoxin-interacting protein (TXNIP), 222
TIGAR
 p53 studies
 REDOX management, 221
 regulation of metabolism, 215–217
 tumor suppression, 103–104
 therapeutic targeting, 490
TIM50, p53 mutation effects on expression, 73
TIN2, 160
TLR. See Toll-like receptor
Toll-like receptor (TLR), therapeutic targeting, 269–270
TPP1, 160, 165
TRAIL, apoptosis mediation, 100
Index

Transactivation domain (TAD)
 binding partners, 16–17
 discrete domains within amino terminus, 54–55
 functional analysis in vivo, 55, 57–58
 history of study, 51–52
 hydrophobic residues in function, 54
 molecular models for transactivation, 56, 72, 75–77
 phosphorylative regulation, 63–64
 prospects for study, 64
 protein interactions
 chromatin modifiers, 60
 negative regulators, 61
 table of proteins, 59
 transcription factors, 58, 60
 sequence comparison between species, 53
 structure, 16–17, 61–63, 71–72
Transcriptional superhub, p53 as, 7–9
Transforming growth factor-β (TGF-β), p53 studies
 gain-of-function p53 mutations and cancer, 316
 mutation effects on receptor expression, 74, 83
 signaling role, 5
TRF1, 159–160
TRF2, 159–160, 162–163
TRIM24, cancer alterations, 239, 336, 338–339
Tumor suppression, p53
 apoptosis role, 147–149
 cell cycle arrest role, 147–149
 effector functions
 apoptosis, 100–101
 cell cycle regulation and DNA damage repair, 101–103
 cellular senescence, 103, 178–179
 metabolism, 103–104
 prospects for study, 104–105
 history of study, 96
 mouse model versus human studies, 105
 oncogenic stress detection and response, 97
 overview, 95–97
 p53 mediation without cell cycle arrest or apoptosis, 149
 transcriptional regulation in tumor suppression, 97–100
 tumor initiation and progression suppression, 149
TXNIP. See Thioredoxin-interacting protein

U
USP7, 385
USP22, 386

V
VDR. See Vitamin D receptor
VEGFR, mutant p53 target gene, 84–85
Vitamin D receptor (VDR)
 p53 mutation effects on expression, 73
 ribosomal protein interactions, 199

W
Whole genome sequencing. See Genome sequencing
WIP1, MDM2 regulation in cancer, 341
WRN, 120–121

X
XPA, 114
XPB, 114
XPC, 114
XPD, 114
XRCC4, 118