Index

A
ABHD5, 113
ALT, 239
Angiogenesis, hepatitis C virus promotion, 126
Animal models, hepatitis C virus
 importance, 37–38
 mice
 genetically humanized mice, 40–42
 human live chimeric mice, 39–40
 transgenic mice, 39
 primates, 38–39
 prospects, 46–47
surrogate models
 George–Baker virus B, 42–43
 nonprimate or equine hepacivirus, 43
 overview, 42
 rodent hepacivirus
 mouse, 43–45
 rat, 45–46
Antibody response. See Humoral immunity, hepatitis C virus
ANXA2, 109
AP2M1, 109
ApoA, 111
ApoC1, 73
ApoE, 111–114
Assembly, hepatitis C virus
 core protein association with cytoplasmic lipid droplets, 107–108
 overview, 106
 prospects for study, 114
 RNA synthesis, membrane niche, 106–107
 stages
 envelopment of virus particles, 109–110
 lipid droplet trafficking, 108–109
 virus particle density heterogeneity, 106

B
B cell. See Humoral immunity, hepatitis C virus
B-cell lymphoma, direct-acting antiviral therapy, 249–250
β-Catenin, hepatitis C virus induction, 126–127
Blood bank, hepatitis C virus testing, 3–4
Broadly neutralizing antibody. See Humoral immunity, hepatitis C virus

C
Cardiovascular disease
 direct-acting antiviral therapy, 250
 hepatitis C virus induction, 242
CBL, virus entry role, 70
CD36, 19
CD81
 genetically humanized mice, 40–41
 structure, 16–18
 virus entry role, 53–55, 66, 69–70, 73, 193
CDHRH2, 199
CDHRH3, 200
Cell culture, hepatitis C virus
 clone isolation, 28
 infectious virus production
 chimeric constructs, 32–33
 overview, 31
 JFH-1 strain culture, 29
 JFH-2 strain culture, 30
 overview, 25–27
 permissive cell lines, 33
 subgenomic replicon assembly, 28–29
Cirrhosis, liver
 direct-acting antiviral therapy
 compensated cirrhosis patient treatment, 211–212
 decompensating cirrhosis patient treatment, 212, 243–245
 hepatitis C virus induction mechanisms, 122–128
CLDN1, virus entry role, 40–41, 55, 66–70
Cognitive impairment
 direct-acting antiviral therapy, 250–251
 hepatitis C virus induction, 242–243
Cryoglobulinemia
 direct-acting antiviral therapy, 249
 hepatitis C virus induction, 242
CypA, 96

D
DAAs. See Direct-acting antivirals
DC-SIGN, 56
DDX3X, 97
Depression, hepatitis C virus induction, 242–243
Diabetes
 direct-acting antiviral therapy, 250
 hepatitis C virus induction, 242
Index

Direct-acting antivirals (DAAs)
- approved drug types and combinations, 211
- cirrhosis-free patient treatment, 211–212
- compensated cirrhosis patient treatment, 211–212
- decompensating cirrhosis patient treatment, 212, 243–245
- extrahepatic manifestation management, 219
- goals of therapy, 210
- hepatocellular carcinoma patient treatment, 212, 219, 245–249
- historical perspective, 227–228
- indications, 211
- limitations, 228–230
- liver transplantation patient treatment, 219
- morbidity and mortality impact, 231–232
- natural killer cell role in therapy, 161
- overview, 209–210
- policy on use
 - failures and successes, 230–231
 - Global Health Sector Strategy on Viral Hepatitis, 230
 - Sustainable Development Goals, 230
- pretreatment assessment
 - classical assessment, 210–211
 - simplified assessment, 212
- prospects, 233–234
- recommendations
 - AASL/IDSA, 216–218
 - EASL, 213–215
- retreatment, 219
- subpopulation studies, 232–233
- transmission impact, 232

Discovery, hepatitis C virus, 1–3

E

E1
- antigenic properties, 194–197
- E2 dimerization, 16, 72
- functions, 16
- structure, 15–16
- virus entry role, 72–74

E2
- antigenic properties, 194–197
- E1 dimerization, 16, 72
- functions, 16
- neutralizing face, genetic variability, and structural flexibility, 197–198
- structure, 16
- virus entry role, 72–74

EGFR
- hepatitis C virus up-regulation, 124–126
- virus entry role, 68

Egress, hepatitis C virus
- apolipoprotein association following egress, 113–114

Fatigue, hepatitis C virus induction, 242–243

Fibrosis, hepatitis C virus induction mechanisms in liver, 122–127

G

GBV-B. See George–Baker virus B
George–Baker virus B (GBV-B), animal models, 42–43

GHSS. See Global Health Sector Strategy on Viral Hepatitis
Global Health Sector Strategy on Viral Hepatitis (GHSS), 230, 260, 266

Glutathione peroxidase, 122

GSK, 127

© 2020 by Cold Spring Harbor Laboratory Press. All rights reserved.
HCC. See Hepatocellular carcinoma
Hedgehog, hepatitis C virus–induced fibrogenesis role, 124, 129
Hepatitis C
acute disease, 238–239
chronic disease, 239–240
Hepatocellular carcinoma (HCC)
direct-acting antiviral therapy, 212, 219, 245–249
hepatitis C virus induction, 128–129
natural history, 239
overview, 121
HIV. See Human immunodeficiency virus
HMG-CoA reductase, 97
HNRNPK, 109
Human immunodeficiency virus (HIV), hepatitis C virus coinfection, 225
Humoral immunity, hepatitis C virus autoantibodies and rheumatoid factor, 192–194
overview, 189–191
prospects for study, 200
rational vaccine design from neutralizing antibody epitopes
antigenic properties of E1 and E2, 194–197
broadly neutralizing antibody immunogenetics, 198–200
E2 neutralizing face, genetic variability, and structural flexibility, 197–198
overview, 194
serological versus neutralizing antibody responses, 191–192
vaccine response, 284–285
IL-1. See Interleukin 1
IL-6. See Interleukin 6
IL-15. See Interleukin 15
Inflammation, hepatitis C virus induction mechanisms, 122–127, 145–148
Innate immunity, hepatitis C virus evasion, 141–142
inflammation, 145–148
interferons
antiviral activity, 141–143
hepatitis C virus infection response, 142
interferon γ genetics in hepatitis C virus infection, 143–145
overview of response, 142–143
interleukin 1 cross talk, 147–148
therapy prospects, 149
types I and III interferon responses, 142–143
overview in liver, 139–140, 156
prospects for study, 148–149
RIG-1-like receptors
summary, 139–140
pathway, 140–141
Insulin resistance
direct-acting antiviral therapy, 250
hepatitis C virus induction, 242
Interferon
antiviral activity, 141–143
hepatitis C virus infection response, 142
interferon γ genetics in hepatitis C virus infection, 143–145
overview of response, 142–143, 157, 159
interleukin 1 cross talk, 147–148
therapy for hepatitis C virus
historical perspective, 227
prospects, 149, 160–161
types I and III interferon responses to hepatitis C virus, 142–143
Interleukin 1 (IL-1), hepatitis C virus response, 146–148
Interleukin 6 (IL-6), hepatitis C virus induction of STAT3 signaling, 125
Interleukin 15 (IL-15), 158
Internal ribosome entry site (IRES), hepatitis C virus protein synthesis regulation, 83
IRES. See Internal ribosome entry site
ITBG1, virus entry role, 69
K
KAK2, 129
L
LIMP-2, 19
Liver transplantation, direct-acting antiviral therapy, 219
L-SIGN, 56
LY6E, 72
M
Macrophage
hepatitis C virus response, 161–163
natural killer cell cross talk, 163–164
MAPK, hepatitis C virus up-regulation of signaling, 125–126
MERTK, 240
Metabolism, hepatitis C virus alteration in liver, 127–128
miR-122, 95–96
N
NAFLD. See Nonalcoholic fatty liver disease
NANBH. See Non-A, non-B hepatitis
Natural killer (NK) cell
 - direct-acting antiviral therapy role, 161
 - hepatitis C virus response, 157–160
 - interferon therapy role, 160–161
 - liver cells, 160
 - macrophage cross talk, 163–164
 - overview, 156–157
 - receptors, 157

NK cell. See Natural killer cell

NKG2A, 161, 163
NKG2D, 163
NLRP3, 146

Non-A, non-B hepatitis (NANBH), historical perspective, 1–3

Nonalcoholic fatty liver disease (NAFLD), hepatitis C virus pathogenesis similarities, 130

Nonprimate or equine hepacivirus (NPHV), animal models, 43

NPC1, 91
NPC1L1, virus entry role, 68
NPC2, 91

NPHV. See Nonprimate or equine hepacivirus

Nrf2, 122
NS2, 84, 87
NS3, 84, 94, 108
NS4A, 94, 107
NS4B, 87, 89, 107
NS5A, 5, 87, 89–90, 94–97, 107–109
NS5B, 93–94

OCLN, virus entry role, 55, 66–70
OSBP, 91

PD-1, 179
PDGF, 124
PHHA, 90, 96
PHP, 90–91
PLA2G16, 72
PLA2G4A, 108

Policy
 - direct-acting antiviral use
 - failures and successes, 230–231
 - Global Health Sector Strategy on Viral Hepatitis, 230
 - Sustainable Development Goals, 230
 - elimination of hepatitis C virus
 - feasibility assessment
 - burden of disease, 264
 - costs, 264
 - elimination versus control, 265–266
 - epidemiologic susceptibility, 261
 - intervention availability, 261–262

overview, 260
political commitment, 263, 265
shown feasibility of elimination, 262–263
synergy between elimination efforts and other interventions, 265

Global Health Sector Strategy on Viral Hepatitis, 260
prospects, 271
strategies
 - delivering for equity, 269–270
 - financing, 270
 - information for focused action, 267
 - innovation for acceleration, 270–271
 - interventions for impact, 267–269
 - overview, 266–267

R
Rap2b, virus entry role, 69–70

Replication, hepatitis C virus
 - genome replication factors
 - CypA, 96
 - lipid-modulating host cell factors, 97
 - miR-122, 95–96
 - NS3, 94
 - NS4A, 94
 - NS5A, 94–97
 - NS5B, 93–94
 - RNA elements, 91–93
 - XRN1, 95
 - XRN2, 95

membrane changes, 87–89
overview, 83–87
prospects for study, 97–98
replication organelle
 - factors in formation
 - host factors, 89–91
 - virus factors, 89
 - history of study, 87–90

RF. See Rheumatoid factor

Rheumatoid factor (RF), hepatitis C virus induction, 193–194

RHV. See Rodent hepacivirus

RNF7, 240

Rodent hepacivirus (RHV), animal models
 - mouse, 43–45
 - rat, 45–46

S
SCARBI. See SR-B1

SDGs. See Sustainable Development Goals

SMADs, 124

SR-B1
 - structure, 17, 19
 - virus entry role, 40–41, 55, 66–69
SR-B1. See SCARB1
SREBP, 97
SRFBRP1, virus entry role, 68
Structure, hepatitis C virus
 CD81, 16–18
 core, 14
 E1, 15–16
 E2, 16
 overview, 11–13
 prospects for study, 20–21
 SR-B1, 17, 19
 virion, 13–14
Sustainable Development Goals (SDGs), 230

T
T cell
 acute hepatitis C response, 238
 failure in chronic hepatitis C virus infection
 CD4+ T cells, 177–178
 CD8+ T cells, 178–179
 prospects for study, 179–181
hepatitis C virus clearance
 acute versus persisting infection response, 173–177
 reinfection protection, 174–175
 sustained T-cell response, 172
 vaccine-primed T cells, 175
 overview of types, 171–172
vaccine response
 clinical trial design, 281–282
 overview, 279, 281
 replication-defective vectors, 283–284
TFRC, virus entry role, 68, 70
TGF-β. See Transforming growth factor β
Transforming growth factor β (TGF-β), hepatitis C virus modulation, 124–125, 159
TRC40, 14
TULP1, 240

V
Vaccination, hepatitis C virus
 challenges
 genetic diversity of virus, 279
 overview, 277–278
 testing of vaccine, 279–280
 economic incentives, 278–279
 historical perspective, 5–7
 immune response
 evidence for protective immunity, 280
 humoral immunity, 284–285
 T-cell response
 clinical trial design, 281–282
 overview, 279, 281
 replication-defective vectors, 283–284
 populations to benefit, 285–286
rational vaccine design from neutralizing antibody epitopes
 antigenic properties of E1 and E2, 194–197
 broadly neutralizing antibody immunogenetics, 198–200
 E2 neutralizing face, genetic variability, and structural flexibility, 197–198
 overview, 194
 traditional vaccine design approaches, 279
VEGF, hepatitis C virus up-regulation, 126
VP1, 19
VP2, 19

W
Wnt, hepatitis C virus activation, 126–127

X
XRN1, 95
XRN2, 95