Index

A
A-1155463, 18
A-1331852, 18
A4LI. See Alliance for Longevity Initiatives
Aβ_{1-42}, 41
ABCs. See Age-associated B cells
“Active grandparent” hypothesis, 64
Activin A, 19
Acetyl CoA, 99
Acylcarnitines, 110
AD neuropathologic change (ADNC), 129–130
AD. See Alzheimer’s disease
Adenine diphosphate ribose (ADPR), 31
Adenine nucleotide transporter (ANT), 98, 101, 104
ADIPOQ gene, 165
ADNC. See AD neuropathologic change; Alzheimer’s disease neuropathologic change
ADP ribosyl-cyclases
CD38, 31
CD73, 31
CD157, 31
ADPR. See Adenine diphosphate ribose
Adult immunization campaigns, 191–192
AG. See Applied genetics
Age-associated B cells (ABCs), 80
Aging
biology, 97–98
biomedical research, 55
evolutionary biodemography, 56–57, 119
humans in evolutionarily relevant environments, 63–64
metabolic rate theory, 167
negative effects, 55
pillars, 13
pleiotropic gene theory, 124
primates, 58–61
risk of death, 120
Taming Aging with Metformin (TAME), 170
Aging research
Amboseli Baboon Research Project, 60
comparative primate aging models, 61–63
cryptocurrency as a crowdfunding mechanism, 212–214
Developmental Theory of Aging, 56
Disposable Soma theory, 56
equity crowdfunding, 210–212
evolutionary principles, 55–56
evolutionary-relevant animal models, 57–58
Mutation Accumulation Theory, 55
AICAR, 110
Akkermansia, 86
α-Klotho, 20, 25
Alliance for Longevity Initiatives (A4LI), 216
ALS. See Amyotrophic lateral sclerosis
Alzheimer’s disease (AD)
diagnosis
clinical, 130–131
pathologic, 131
psychometric tests, 130
early-onset familial forms, 133
lifestyle-based approaches, 138
progressive, 131
resistance and resilience
caveats of current definitions, 132–133
defined, 131–132
genetic mediators, 133–134
leveraging approved therapeutics to target pathways, 137–138
leveraging modifiable risk factors, 138–139
mechanisms, 133
modifiable mediators, 134–136
targeting underlying pathology, 136–137
symptoms
memory loss, 130
sleep disturbances, 138
treatments
disease-modifying, 136
effects of neuron dysfunction and loss, 137
therapeutic approaches, 136
Alzheimer’s disease neuropathologic change (ADNC), 129, 131–139
Amboseli Baboon Research Project, 60
Ambra1, 101
Amino acid tryptophan (Trp), 33–34
AMPK, 101, 104, 110, 167
Amyloid precursor protein (APP), 102, 131, 133
Amyloid β (Aβ) plaques, 102, 129, 131, 137
Amyotrophic lateral sclerosis (ALS), 214
ANAVEX2-73, 104
Anemia, 61, 88
ANT. See Adenine nucleotide transporter
Antagonistic pleiotropy, 16, 55–56, 168–169
Anti-DPP4 antibodies, 19
cryptocurrency, 212–214
equity, 210–212
“flexible funding” campaigns, 209
impact, 216
Jimmy Fund, 216
platforms
aging research, 210
uses, 209–210
publishing, 215–216
versus traditional funding, 208–209
Crowdsourcing
catalyst for advocacy and increased public funding, 216–217
decentralized science, 214–215
impact, 216
Cryptocurrency
crowdfunding mechanism for aging science, 212–214
global adoption, 212
PulseChain, 214
CSA. See CS complementation group A
CSB. See CS complementation group B
CS complementation group A (CSA), 37, 40
CS complementation group B (CSB), 37, 40
Curcumin, 18, 104, 110
CureDAO, 215
Cyclic ADP ribose (cADPR), 31
Cytochrome c, 101
Cytokines, 75, 78, 83
Cytoplasmic chromatin fragments (CCFs), 16

D
Damage-associated molecular patterns (DAMPs), 47, 74–75, 101
DAMPs. See Damage-associated molecular patterns
DAOs. See Decentralized autonomous organizations
DASH. See Dietary approaches to stop hypertension
Data Protection Act (UK), 215
Dct-1 gene, 40, 109
Decade of Healthy Ageing, 193
Decentralized autonomous organizations (DAOs), 214
DeSci, 215
Developmental Theory of Aging, 56
Diabetes mellitus type 2 (T2DM), 161, 164
Diabetes Prevention Program (DPP), 164
Dietary approaches to stop hypertension (DASH), 138
Dietary restriction (DR), 124, 138
Diseases, age-related, 7–8, 57, 61, 97, 147, 164–165, 171, 226
Disposable Soma theory, 56, 124
Dorea, 87
“Dorian Gray” slowdown, 153
DPP. See Diabetes Prevention Program
DR. See Dietary restriction
Drosophila, 41, 102
Dysbiosis, age-related, 46, 71, 74, 86–87

E
E2F, 14–15
EA. See Ellagic acid
ECM. See Extracellular matrix
eIF2α. See Eukaryotic initiation factor 2α
Elamipretide, 104–108
Electron transport system (ETS), 98–99
Ellagic acid (EA), 109
Ellagittannins (ETs), 109
Endoplasmic reticulum (ER), 84, 100
Enterobacteriaceae, 86
Equity crowdfunding, for aging research, 210–212
ER. See Endoplasmic reticulum
Ercc1, 76, 83
Escherichia coli, 121
Ethereum, 208, 212, 214
ETS. See Electron transport system
ETs. See Ellagitannins
Eubacterium, 87
Eukaryotic cells, 98
Eukaryotic initiation factor 2α (eIF2α), 84
Evolutionary medicine, 56, 63
Exceptional longevity
age-delaying drugs, 168–170
genetics, 164–167
heritability, 163–164
protective genotypes, 165
rationale for studying, 161–163
Extracellular matrix (ECM), 17

F
FADH2, 98
Faecalibacterium species, 86–87
Familial longevity, 164–168
FDI. See First dorsal interosseous
Fecal microbiota transplantation (FMT), 87
Financial wellness, 193
First dorsal interosseous (FDI), 108
FMT. See Fecal microbiota transplantation
Focused research organization (FRO), 198
FOXO3, 161, 166, 179, 181–182
FOXO4-p53, 18
FRO. See Focused research organization
FUNDC1, 101
Funding channels of geroscience
foundational foundations, 223
funders, 222–224
investing in discoveries, 226–227
investing in people, 224–226
new philanthropists, 223–224
surge of investment, 224
tech billionaires, 223
Index

G
G1, 14
G1/S, 14–15
G2/M DNA, 15
GCN2. See General control nonrepressible 2
General control nonrepressible 2 (GCN2), 84–85
Generic recommendations (GRs). See Retirement age, generic recommendations
Genome-wide association study (GWAS), 134, 165–167
Geroprotectors, 9, 209, 236
GeroScience Interest Group (GSIG), 223, 233
GH. See Growth hormone
GHR. See GH receptor
GHR receptor (GHR), 167, 169
Glycoprotein nonmetastatic melanoma protein B (GPANMB), 19
Gompertz slope, 122–123
GPANMB. See Glycoprotein nonmetastatic melanoma protein B
GPR78, 166
Great apes, 61–62
Growth hormone (GH), 102, 120, 167, 171
GRs. See Retirement age, generic recommendations
GSIG. See GeroScience Interest Group
GWAS. See Genome-wide association study

H
Health gains, 156
Health Insurance Portability and Accountability Act 1996 (HIPAA), 215
Health Savings Accounts (HSAs), 191
Health span
assessments, 180
concept, 232
current and future generations, 177
extension of, 9, 17, 87, 104, 163
longevity, 77
meaning, 9, 232
Healthy aging
age-related pathologies, 55
biomarkers, 86
importance, 190
investment, 191–192
mitochondrial-targeted interventions, 111
promotion, 29, 64, 97, 138
role for spermidine in, 109
social gains, 153
strategies, 193
workplace, 191
Heat shock response (HSR), 74, 84
HEL. See Hexanoyl-lysine adduct
Hematopoesis, 77
Hematopoietic stem cells (HSCs), 77
HEXA gene, 166
Hexanoyl-lysine adduct (HEL), 103
High-density lipoprotein (HDL), 46, 161, 165, 169
HIPAA. See Health Insurance Portability and Accountability Act 1996
HLE. See Life expectancy, healthy life expectancy
HOPE trial, 101
HPA. See Hypothalamic-pituitary-adrenal
HSAs. See Health Savings Accounts
HSCs. See Hematopoietic stem cells
HSR. See Heat shock response
Human inflammaging, 63
Human primary cells, subculturing, 13
Human senescence, 120–123
Hutchinson–Gilford progeria syndrome, 77, 162
Hydra spp., 119, 121–122, 125
Hyperphosphorylated Tau (pTau), 41, 129, 131
Hypertension, 46, 61, 63, 103, 137–138, 163, 170
Hypothalamic-pituitary-adrenal (HPA), 62

I
IFN. See Interferon
IGBP-3, 168
IGF-1. See Insulin-like growth factor 1
IL. See Interleukin
IMM. See Inner mitochondrial membrane
Immune dysregulation, age-associated, 78, 83
Immune responses, dysregulation, 78
Impact index fund, 212
Impaired oxidative phosphorylation, 100
Inflammaging
age-related dysbiosis, 86–87
immunosenescence, 78–84
integrated stress response, 84–86
pathology and accelerated aging
attenuating chronic inflammation, 76–77
inducing inflammation, 75–76
underlying mechanisms, 72–75
Inflammation
attenuation of, 76–77
insulin resistance induced by, 74
mitochondrial RNA/RIG-I-dependent, 39
pathology and accelerated aging
“pillars” of aging, 72
risk factor for chronic diseases, 87–89
suppression, 75
Inner mitochondrial membrane (IMM), 83, 102, 104
Insulin-like growth factor 1 (IGF-1), 102, 161, 167–168
Integrated stress response (ISR), 71–72, 74, 85–86
Interferon (IFN)
IFN-I, 16
IFN-γ, 78
Interleukin (IL)
Interleukin 1 (IL-1), 47, 76
Interleukin 1α (IL-1α), 19–20
Interleukin 1β (IL-1β), 86
Interleukin 6 (IL-6), 19–20, 47, 76–77, 83–84, 86
Interleukin 8 (IL-8), 19
Interleukin 17 (IL-17), 17, 77–78, 80, 84
Interleukin 21 (IL-21), 17
Interleukin 23 (IL-23), 17
Intestinal bowel disease, 72
Intrinsic dysregulation, age-related, 71–72
IR. See ischemia reperfusion
Ischemia reperfusion (IR), 105–107
ISR. See Integrated stress response
J
J147, 104
JAK/STAT inhibitors, 16
JAK/STAT3 inhibitors, 19
Jimmy Fund, 216–217
K
Kynurenine pathway, 31–34
L
LabDAO, 215
Lactobacterium species, 138
Lamin B1, 20
LC. See Liquid chromatography
LDL. See Low-density lipoprotein
LEAF. See Lifespan Extension Advocacy Foundation
LGP. See Longevity Genes Project
Life expectancy
compressing morbidity, 148
global, 186
healthy life expectancy (HLE), 150
levels, 150
new epidemiological transition and, 152–153
rise in, 149
survival curve, 154
worldwide trend in, 195
Life extension
arguments for and against, 5–7
funding for research
ARPA-Aging model, 199
collaborations, 198
failure, 203
game-changing technologies, 197–198
limitations, 203–204
long-term, 201–203
“moonshot” funding models, 196–197
nongovernmental, 200–201
supportive/preliminary data, 198–200
Life spans
determination, 1
human, 3–5
Kirkwood’s disposable soma theory, 124
origin, 1–2
species-specific, 2–3, 124
Limits to life, mechanisms setting, 123–126
Liquid chromatography (LC), 35, 101
LLFS. See Long Life Family Study
Long Life Family Study (LLFS), 163, 165, 168
Longevity. See also Exceptional longevity
assessing performance, 155–157
economic tools to evaluate, 148
evaluating gains to health, 148–150
evolutionary basis, 121
familial, 164, 167
humanity’s quest, 7
hyperpersonal longevity assessment tool, 179
international gains, 153–155
mathematical modeling, 121
new epidemiological transition, 152–153
new financial landscape, 185–188
rationale for studying, 161–163
role of SIRT6, 168
targeting biological age, 150–152
value of statistical life (VSL) framework, 148, 155
Longevity Genes Project (LGP), 163, 167
Low-density lipoprotein (LDL), 46
M
Mammalian target of rapamycin (mTOR), 16, 19, 84, 104, 167, 169
Matrix metalloproteinases (MMPs), 20
mCAT. See Mitochondrial catalase
MCI. See Mild cognitive impairment
MCP1, 76
MDM2 inhibitor, 20
MDPs. See Mitochondrial-derived peptides
Mediterranean-DASH intervention for neurodegenerative delay (MIND), 138
Mendelian genetics, 161, 166
Metformin, 77, 110, 164, 170, 203, 228, 236
Microbiomes, 71–72, 74, 86–87, 109, 138
Mild cognitive impairment (MCI), 64, 138
MIND. See Mediterranean-DASH intervention for neurodegenerative delay
MiR146a, 77
Mitochondria
calcium homeostasis and aging, 100
double-membrane organelles, 97
outer mitochondrial membrane (OMM), 101
quality control in aging, 100–101, 108–110
redox stress in aging muscle, 108
role in aging biology, 97–98
Mitochondrial bioenergetics, 74, 98–99
Mitochondrial catalase (mCAT), 100
Mitochondrial-derived peptides (MDPs), 101, 110, 170
Mitochondrial dysfunction, 13–14, 25, 35–39, 42, 46, 76, 99–100, 138, 196
Mitochondrial metabolites, in aging, 99–100

© 2024 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

Mitochondrial oxidative stress, 101
Mitochondrial permeability transition pore (mPTP), 100
Mitochondrial redox biology, 99
Mitochondrial targeted therapies
 astaxanthin (AX), 103–104
 biogenesis, 110
 elamipretide, 104–108
 mitochondrial quality control, 108–110
 mitoquinone (MitoQ), 102
 MitoTEMPO, 102–103
 Skq1, 102
Mitochondrial unfolded protein response (mUPR), 35, 39, 42, 100
Mitoquinone (MitoQ), 102
MitoTEMPO, 102–103
NMNadenylyl transferases 1–3 (NMNA T1–3), 32–34, 37
NADPH, 99
NADPH synthase (NADS), 33–34
NADH, 29–31, 33–35, 98–100
NADP. See Nicotinamide adenine dinucleotide phosphate
NADPH, 99
NAD. See Nicotinic acid adenine dinucleotide NAAD. See Nicotinic acid adenine dinucleotide NADP. See NA adenine dinucleotide phosphate NAD+ augmentation benefits, 38–42 biosynthetic pathways, 32 changes in age-associated diseases, 37–38 changes during normal aging, 34–36 changes in pathological aging, 37 consuming enzymes, 30–31 consuming proteins, 31 supplementation, 42–46
NAD+ synthase (NADS), 33–34
NADH, 29–31, 33–35, 98–100
NADP. See Nicotinamide adenine dinucleotide phosphate NADPH, 99
NAD. See NAD+ synthase
NAMN. See Nicotinic acid mononucleotide NAMPT, 33, 36–37, 39, 42
Naproxen, 87
NaPRT. See Nicotinic acid phosphoribosyltransferase National Cancer Act, 216
National Health and Nutrition Examination Survey (NHANES III), 167
National Institute on Aging (NIA)
 early days, 231–234
 Interventions Testing Program (ITP), 231
 Longevity Assurance Genes (LAG) initiative, 231
 request for applications (RFAs), 231
 development of geroscience, role in, 231–236
Natural killer T (NKT) cells, 78
Negative aging, 57
NEMO, 76
Neurofibrillary tangles (NFTs), 41, 129, 131
Neuroscience, 202, 233–234
NF-κB inhibitors, 16, 19, 47, 71, 75–77, 85–86, 88
NFT. See Nonfungible cryptocurrency token
NFTs. See Neurofibrillary tangles
NHANES III. See National Health and Nutrition Examination Survey
NIA. See National Institute on Aging
Natural selection, 3, 16, 55–56, 121, 124, 126
Nicotinamide adenine dinucleotide (NAD). See NAD+ and NADH
Nicotinamide adenine dinucleotide phosphate (NADP), 31
Nicotinamide mononucleotide (NMN), 30–34, 36–42, 46, 100, 108, 215
Nicotinamide riboside (NR), 30–34, 38–42, 46, 100
Nicotinamide riboside kinases (NRK1-2), 32–33
Nicotinic acid adenine dinucleotide (NAAD), 34, 38–39
Nicotinic acid mononucleotide (NAMN), 33–34
Nicotinic acid phosphoribosyltransferase (NaPRT), 34
NKT cells. See Natural killer T cells
NLRP3, 42, 74, 88, 101
N-methyl-D-aspartate (NMDA) receptor, 137
NMDA receptor. See N-methyl-D-aspartate receptor
NMN. See Nicotinamide mononucleotide
NMNadenylyl transferases 1–3 (NMNA T1–3), 32–34, 37
NMNAT1–3. See NMNadenylyl transferases 1–3
Nonfungible cryptocurrency token (NFT), 214
Nonsteroidal antiinflammatory drugs (NSAIDs), 138
NOTCH receptor, 19
NOVOS, 215
NR. See Nicotinamide riboside
NRF2, 101
NRK1–2. See Nicotinamide riboside kinases
NSAIDs. See Nonsteroidal antiinflammatory drugs
Nutraceuticals, 103, 215, 229

O
Odoribacter, 86
Olaparib, 40
OMM. See Mitochondria, outer mitochondrial membrane
Open Longevity, 215
OpenCures, 215
Oscillospira, 86
Oxidative phosphorylation, 98–100
Oxidative phosphorylation, 98–100
Oxidative phosphorylation, 98–100

P
P7C3, 42
P16INK4a, 14–20, 24

© 2024 by Cold Spring Harbor Laboratory Press. All rights reserved.
Index

SS peptides. See Szeto–Schiller peptides
Stem cell aging, 232
Stimulator of interferon gene (STING) pathways, 101
STING. See Stimulator of interferon gene pathways
SToMP-AD, 20
Streptococcus, 86
Superoxide dismutase (SOD2), 99
Szeto–Schiller peptides, 104

Unfolded protein response (UPR), 35, 74, 84, 100
uPAR. See Urokinase-type plasminogen activator receptor
UPR. See Unfolded protein response
Urokinase-type plasminogen activator receptor (uPAR), 19
Urothilin A (UA), 41, 101, 109–110
USP42 gene, 166

V
Vps-34 gene, 109

W
War on Cancer, 216
Wealth management
age of longevity, 185–188
challenges, 185
Covid-19, impacts and lessons, 190
efficient, equal caregiving, 189
financial wellness, 186, 188–189
individual, 192–193
labor market, 187
“Life Plan” tool, 192
maximization of financial security, advances in geroscience, 188
relation with health, 188
role of financial services industry
“financial gerontology” training, 192
financial tools to pay for longer lives, 192
needs and opportunities of modern longevity, 192
strategies
adult immunization, health screenings, and telehealth options, 191–192
age-friendly workplaces, 189
benefits for employee caregivers, 189–190
different kinds of family caregiving, 191
health savings accounts (HSAs), 191
prioritizing healthy aging, 191
saving and investing early, 190
tools to plan, save, and invest for a longer life, 189
working and learning beyond retirement age, 188–189
Woolen inhibitor, 15
Werner syndrome (WS), 37, 162
Willingness to pay (WTP), 148–149, 152–154
Wolverine (reversing aging), 151–153
Working age, definition, 187
WS. See Werner syndrome
WTP. See Willingness to pay

UA. See Urolithin A
UBX101, 20

© 2024 by Cold Spring Harbor Laboratory Press. All rights reserved.