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Inherited retinal diseases (IRDs) are a clinically and genetically heterogeneous group of rare
conditions leading to various degrees of visual handicap and to progressive blindness inmore
severe cases. Besides visual rehabilitation, educational, and socio-professional support, there
are currently limited therapeutic options, but the approval of the first gene therapy product for
RPE65-related IRDs raised hope for therapeutic innovations. Such developments are facing
obstacles intrinsic to the disease and the affected tissue including the extreme phenotypic and
genetic variability of IRDs and the fine tuning of visual processing through the complex
architecture of the postmitotic neural retina. Aprecise phenotypic characterization is required
prior to genetic testing, which now relies on high-throughput sequencing. Their challenges
will be discussed within this article as well as their implications in clinical trial design.

Inherited retinal diseases (IRDs) are a large
group of rare genetic conditions with a preva-

lence of about 1/3000 subjects worldwide (Bes-
sant et al. 2001) that may be isolated or part of a
syndromic disorder. IRDs may affect the entire
retina such as in the most common one, rod-
cone dystrophies (RCDs) also known as retinitis
pigmentosa (RP), or only the macular region
(i.e., macular dystrophies) with various degrees
of visual handicap up to progressive blindness.

Besides visual rehabilitation, educational, and
socio-professional support, there are currently
limited therapeutic options for IRDs (Sahel
et al. 2015). Nevertheless, the approval of the
first gene therapy product for the treatment of
RPE65-related IRDs after successful phases 1/2
(Maguire et al. 2008) and 3 (Russell et al. 2017)
and ongoing clinical trials (Sahel et al. 2015)
raised hope for therapeutic innovations. Such
developments are facing obstacles intrinsic to
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the disease and the affected tissue including the
extreme phenotypic and genetic variability of
IRDs and the fine tuning of visual processing
through the complex architecture of the postmi-
totic neural retina.Wewill be discussing some of
these issues within this article.

PHENOTYPIC VARIABILITY OF IRDs
MIRRORED BY AN EXTREME GENETIC
HETEROGENEITY

IRDs are characterized by an extreme phenotypic
variability, which is difficult to accurately capture
within a clinical classification, an attempt being
presented inTable 1. IRDs range fromcongenital,
usually stationary disorders to early-, juvenile-, or
adult-onset degenerative disorders. Each of these
disorderswill have avariable impact anddegreeof
severity on visual function. Some dystrophies will
progressively affect the entire retina usually lead-
ing to blindness, whereas disorders affecting only
the central part, the macula, will be associated
with a severe impact on visual acuity but with
preserved peripheral vision. Most of these disor-
ders primarily affect photoreceptor cells, namely,
rod photoreceptors responsible for dim light vi-
sion, and cone photoreceptors associated with
daylight, color, and precise vision (Lamb 2022).
The primary site of dysfunction can also be the
retinal pigment epithelium (RPE), which, among
other functions, provides metabolic support es-
sential to photoreceptor functioning and survival
(Caceres and Rodriguez-Boulan 2020). The re-
spective prevalence of each of these entities is
not always precisely known but, by far, RCD
(RP) is the most prevalent one, affecting about
1/4000 individuals worldwide, representing up
to 70% of IRDs (Bocquet et al. 2013). This entity
itself is associated with some phenotypic vari-
ability in the age at onset, the disease course,
and the potential association with additional
alterations as part of syndromic diseases. Usher
syndrome, associated with variable degrees of
deafness and vestibular dysfunction, is the most
common syndromic form of RCD (Delmaghani
and El-Amraoui 2022) followed by Bardet–Biedl
syndrome, a ciliopathy that associates variable de-
grees of cognitive difficulties, obesity, hexadacti-
lia, and kidney disease (Mockel et al. 2011). The

management and support of patients affected
with these syndromic disorders is therefore not
only challenged by the visual handicap but also
by the other systemic alterations, which require a
multidisciplinary management. Of note, despite
the clinical heterogeneity of RCD/RP, symptoms
and ophthalmic alterations may be consistent
within this clinical heterogeneity with night
blindness often being the first symptom followed
by progressive peripheral visual field constriction
and eventually the loss of central vision late in the
disease leading to blindness in most severe cases.
Clinical examination will typically reveal visual
field constriction, generalized rod-cone dysfunc-
tion on the full-field electroretinogram (ff-ERG)
andcardinal signson fundus examination includ-
ing a waxy pallor of the optic disc, narrowed
retinal vessels, and pigmentary changes in the
retinal periphery (Fig. 1). Macular dystrophies
will manifest differently starting with decrease in
visual acuity, color vision disturbances, and some
pathognomonic macular alterations on fundus
examination or fundus autofluorescence imaging
(Fig. 2).With amore severe visual outcome, cone
and cone-roddystrophies have overlapping visual
symptoms at onset in addition to photophobia.
ff-ERG is instrumental for the differential diag-
nosis and visual prognosis (i.e., macular dystro-
phies have normal retinal function on ff-ERG
while cone and cone-rod dystrophies show vari-
able degrees of generalized cone and rod dysfunc-
tion) (Cornish et al. 2021).

The clinical heterogeneity of IRDs is mir-
rored by the genetic heterogeneity. Indeed, since
the initial discovery ofmutations inRHO under-
lying autosomal-dominant RCD as the first gene
defect identified underlying IRDs (Dryja et al.
1990a,b), more than 250 genes have been asso-
ciated with some forms of IRDs (web.sph.uth
.edu/RetNet/home.htm). These genes encode
proteins of various expression profiles and func-
tions, some being specific to photoreceptors
(e.g., involved in the phototransduction cascade)
or the RPE (e.g., involved in the visual cycle),
whereas others are associated with a more ubiq-
uitous expression profile such as splicing fac-
tors (e.g., PRPF31, PRPF8, PRPF3) or proteins
involved in the primary cilium maintenance,
mutations in the latter potentially leading to syn-
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dromic disease defined as ciliopathies (Bujakow-
ska et al. 2017).

The genetic complexity goes even further
since distinct mutations within the same gene
can lead to distinct phenotypes or inheritance
(Fig. 3), while a similar phenotype can be asso-
ciated with distinct genotypes. For instance, an
RP phenotype may be associated with genetic
variants in more than 70 distinct genes (web
.sph.uth.edu/RetNet/home.htm) while some of
these genes may be associated with several dis-
tinct IRDs depending on the genetic variants.
Similarly, maculopathies with flecks are more
commonly associated with ABC44 variants fol-
lowing an autosomal-recessive inheritance, but
similar phenotypes may also be associated with
variants inPRPH2or less commonly inELOVL4,
both gene defects following an autosomal-dom-
inance inheritance.

Biallelic variants in the ATP-binding cas-
sette, subfamily A, member 4 (ABCA4, OMIM�

601691) are underlying Stargardt disease
(OMIM#248200), the most common form of
macular dystrophy, but may also lead to cone,

cone-rod dystrophy (CORD3, OMIM#604116),
and possibly RP (RP19, OMIM#601718) with
some degree of phenotype/genotype correla-
tion, genetic variants leading to a more severe
ABCA4 dysfunction being associated with more
severe phenotypes (Cremers et al. 2020). Sim-
ilarly, monoallelic BEST1 (OMIM�607854)
variants were initially associated with the
second-most-commonmacular dystrophy, auto-
somal-dominant Best vitelliformmacular dystro-
phy (OMIM# 153700) (Petrukhin et al. 1998),
whereas monoallelic-specific splice site variants
were found underlying autosomal-dominant vit-
reoretinochoroidopathy (ADVIRC, OMIM#19
3220) (Burgess et al. 2009) and biallelic changes
in autosomal-recessive bestrophynopathy (ARB,
OMIM# 611809) (Burgess et al. 2008). RPGR
(OMIM�312610) variants are the most common
cause of X-linked RCD (RP3, OMIM#300029)
(Meindl et al. 1996) but also X-linked CRD
(OMIM#304020) (Yang et al. 2002; Nassisi et al.
2022), bothhavingdistinct impact onvisual func-
tion. Even more relevant for patients’ manage-
ment and counseling, certain genes may be asso-

A B

C

200 μm

200 μm

Figure 1. Characteristic retinal alterations of rod-cone dystrophy, also known as retinitis pigmentosa, in a 50-yr-
oldmanwith biallelicUSH2Avariants (allele 1: c.1036A>C, p.(Asn346His); allele 2: c.2276G>T, p.(Cys759Phe)
(right eye). (A) Fundus photograph showing a pale optic disc, narrowed retinal vessels, chorioretinal atrophy, and
pigmentary changes in the mid-periphery with perifoveal changes. (B) Short-wavelength fundus autofluores-
cence showing peripheral loss of autofluorescence. (C) Spectral domain optical coherence tomography showing
outer retinal alteration outside the foveal region.
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ciatedwitheither isolated retinal disorders or syn-
dromic diseases (e.g., biallelic USH2A variants
leading either to autosomal-recessive RCD or
Usher type 2 [Eudy et al. 1998; Bernal et al.
2003]; CLN3 variants can lead to a severe and
eventually lethal syndromic neurological disor-
der—Battendisease—or toan isolatedretinal dys-
trophy [Smirnovet al. 2021]). Finally, evenwithin
the same gene defect, there is a high inter- and
intrafamilial variability, variable expression, and
incomplete penetrance (Farrar et al. 2017).

A precise delineation of phenotype/geno-
type correlation is therefore essential for a better
understanding of IRD, an improved patients’
management, but also to support therapeutic
research.

MASSIVE PARALLEL SEQUENCING APPLIED
TO IRDs

The past two decades have seen tremendous tech-
nological developments in the field of massive

parallel sequencing accelerating gene discovery
and delivering high-throughput analytic tools
particularly suited to encompass the genetic het-
erogeneity of IRDs. Indeed, nearly 300 genes have
been associated with specific forms of IRDs (web
.sph.uth.edu/RetNet/sum-dis.htm#D-graph, last
accessedMarch 13, 2023). Targeted next-genera-
tion sequencing (NGS) has indeed passed from a
research setting (Audo et al. 2012) to diagnostic
laboratories with a genetic resolution rate reach-
ing about 70% (Shah et al. 2020; Britten-Jones
et al. 2023). Inaddition,whole-exomesequencing
(WES) and further whole-genome sequencing
(WGS) have also entered the diagnostic area
and provide a more comprehensive genetic
analysis. Inadditiontoprovidingabettercoverage
of coding regions, the lattercovers alsononcoding
intronic and regulatory regions and allows amore
precise analysis of DNA structural alterations
such as copy number variations and other large
genomic changes or repeat expansions (Dol-
zhenko et al. 2017;Chen et al. 2019). Thismassive

A

B

200 mm

Figure 2.Characteristic retinal alterations for the twomost commonmacular dystrophies on fundus photographs
and short-wavelength fundus autofluorescence: (A) Stargardt macular dystrophy, and (B) Best vitelliform dys-
trophy (BEST 1 heterozygous variant: c.889C>T, p.(Pro297Ser)).
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parallel sequencing however generates a signifi-
cant volume of data to be stored and analyzed
throughrelevantbioinformaticalgorithms,which
became more efficient along with the develop-
ment of the techniques and the reduction of their
cost. In this context, a detailed phenotypic char-
acterization and a precise phenotype/genotype
delineation has become increasingly essential to
pinpoint the genetic cause among the numerous
genetic variants obtained with high-throughput
sequencing. The issue of unsolicited or incidental
genetic findings, which should be discussed with
thepatientprior togenetic testing, canbe resolved
by performing phenotype-based in silico panels
on a predefined list of genes associated with the
disease of interest. This option reduces the num-
ber of variants to analyze and limits the interpre-
tation to genomic regions within the strict exper-
tise of the interpreting biologist. A variant
interpretation has been refined with the Ameri-
can College of Medical Genetics and Genomics
guidelines (Richards et al. 2015). Nevertheless,
variants of unknown significance remain a real
issuewhen it comestoaccurategenetic counseling
and access to therapies or selection for clinical
trials (Hoffman-Andrews 2017). To improve var-
iant classification, a precise phenotypic character-
ization may help in addition to variant segrega-
tionwithinagivenfamily,which shouldbesought
systematically. The implementation of functional
tests, such asmini-gene assays to validate putative
RNAmis-splicing, for instance, cilia-basedassays,
or biochemical tests (Sangermano et al. 2018;
Yang et al. 2019; Westin et al. 2021; Lange et al.
2022), when relevant, are essential to refine vari-
ant classification. But these require an additional
technology that is not always present in a diag-
nostic setting. Finally, an incentive should be
given to report any new variant in available data-
bases, such as the Leiden Open Variation Data-
base (databases.lovd.nl/shared/genes) or ClinVar
(www.ncbi.nlm.nih.gov/clinvar/), a requirement
for certain genetic journals prior to publication
(e.g., Human Mutation), which should be made
mandatory for any diagnostic genetic laboratory.
Indeed, an exhaustive reporting of all identified
variants would help further develop the genetic
landscapeof IRD,which still needs to be complet-
ed. In this respect, a recent meta-analysis of tar-

geted NGS panels applied to IRDs revealed a ge-
netic diagnostic yield between 52% and 74%
(Britten-Jones et al. 2023). More recently applied,
WGS constitutes an unprecedented powerful tool
to solve additional cases, although recent studies
suggest that this added improvement may be lim-
ited (Wen et al. 2023) with only 2.1% additional
cases for whichWGS identified structural variants
thatweremissedbyNGSorWES(Wenetal. 2023).
Expanding IRD cohorts analyzed through WGS,
with improvedbioinformatic pipelines andvariant
classification, will help better address the impact of
WGS to resolve genetically unsolved cases. Newer
technologies such as long-read sequencing may
bring further insight in providing a better genome
mapping of structural variants and highly repeti-
tive regions as well as providing important phase
information (Amarasinghe et al. 2020).

Finally, there are so far very few studies ad-
dressing the role of epigenetics in IRDs, which
could account, to some extent, for the intra-
familial phenotypic variability or for some of
the genetically unresolved cases (Dvoriantchi-
kova et al. 2022). Further studies would be need-
ed to establish the role of epigenetics in the clin-
ical and genetic heterogeneity of IRDs, with a
major obstacle residing in the lack of direct ac-
cess to the diseased tissue.

A better understanding of the genetic land-
scape of IRDs, along with the development of
deep phenotyping and relevant phenotype/ge-
notype correlation, is essential to support the
development of therapeutic trials.

NEED FOR A BETTER PHENOTYPIC
DELINEATION AND OUTCOME MEASURE
TO FACILITATE CLINICAL TRIALS

The past decades have seen an increased number
of clinical trials in IRDs,which led to the approval
of the first gene-augmentation therapy for
RPE65-related IRDs (Russell et al. 2017). This
active translational research is challenged by the
phenotypic and genetic heterogeneity of IRDs. In
this context, a panel of experts in thefield recently
established the priorities needed to accelerate
therapeutic research facing these challenges
(Thompson et al. 2015, 2020). The first priority
was identified as “theuseofnaturalhistorystudies
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to guide clinical trial design” (Thompson et al.
2015). These natural history studies will have to
face the intrinsic phenotypic variability of IRDs,
even within a single genotype, by including a sig-
nificant number of patients to reach statistical
power. They will provide relevant information
ondiseaseprogressionanddeterminebiomarkers
and clinical end points better suited to document
disease severityandprogression,while potentially
identifying a relevant window of intervention,
which will be essential for trial design.

The selection of relevant outcomes and end
points for clinical trials may directly affect the
success of innovative therapeutic strategies.While
for other acute diseases (e.g., exudative neovascu-
lar age-related macular degeneration, uveitis)
(Schmetterer et al. 2023) improvement of visual
acuity is generally considered themost important
clinical outcome, for IRDs it may not be themost
relevant criteria. In most cases, a reasonable ob-
jective of a therapy in IRDs would be delay-
ing disease progression and stabilizing visual
acuity over time, improving it being elusive
when associated with photoreceptor degenera-
tion. Indeed, the phase 2/3 studies for X-linked
RP (NCT03116113) and for choroideremia
(NCT03496012) did not meet the primary out-
comeof a15-letter gain invisual acuity frombase-
line, an outcome accepted by the FDA, whereas
other end points, such as no change in visual acu-
ity or visual field from baseline, may have been
relevant for the disease and the patients. A close
dialoguewith regulatory agencies prior to clinical
trial design to better discuss the specificity of
IRDs, in light of the phenotypic and genetic het-
erogeneity, along with natural history data may
help to better define outcome measures and end
points in IRDs. The development of standardized
testing guidelines would take into account (1)
the different definition of “therapeutic efficacy”
for specific types of IRDs and interventions; (2)
the correlation of each surrogate outcome with
accepted clinically meaningful outcomes for as-
sessing efficacy; and (3) the reproducibility and
reliability of the outcome measures evaluated
(Thompson et al. 2020). Furthermore, the current
advancing use of artificial intelligence and ma-
chine learning is leading to the opportunity of
standardizing outcome measures across multiple

trial sites and may take into account genetic het-
erogeneity (Sumaroka et al. 2019, 2020). Never-
theless, while highly standardized clinical tests are
important for the evaluation of potential treat-
ments, the development of new clinical outcomes
that reflect the needs of patients (e.g., patient-re-
ported outcomes and performance-based tests)
would be highly relevant (Thompson et al. 2020).

CONCLUDING REMARKS

IRDs are characterized by a significant pheno-
typic and genetic heterogeneity. The advent of
genomic testing along with deep phenotyping
offers a unique opportunity to better delineate
phenotype/genotype correlations and subse-
quently support improved management of
IRD patients, but also to provide more accurate
biomarkers for successful clinical trials.
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