Preface

Immunoreceptor signaling as a topic of research has a history of about 30 years. Though the effects of plant lectins on lymphocyte activation were studied back in the 1960s, the modern era began once the lymphocyte antigen receptors were isolated and characterized. After a number of false starts, the T-cell antigen receptor (TCR) was finally identified and its multi-subunit character described in the 1980s. Though surface immunoglobulin was well known to be the recognition component of the B-cell antigen receptor (BCR), the signaling components of this receptor as well as the family of Fc receptors were also identified during this period.

Since then and with the involvement of increasing numbers of researchers, the field has expanded and has flourished due to the power of modern multidisciplinary research. Cellular immunology approaches demonstrated how receptor engagement affects lymphocyte activation, cytokine production, and elaboration of cell-surface molecules. Biochemical approaches not only resulted in isolation of the receptors but also an increasing list of downstream signaling molecules. The latter include protein tyrosine and serine kinases as well as a growing list of their substrates, all central to immunoreceptor signaling. The analysis of complexes of signaling molecules and the protein–protein interactions that make up these complexes remains an active area of research.

The molecular biology revolution that affected all of biomedical research over the same timespan also helped to transform immunoreceptor signaling research. Modern molecular biological tools allowed for the identification and characterization of the receptors and downstream signaling molecules. Genetic approaches such as the generation of mutants and their expression then allowed for the role of these molecules to be defined in cells and in engineered mice. Recently, the application of cell biologic and modern imaging techniques has triggered a new wave of discoveries. The application of these methods led to the discovery of synapses formed during cell–cell contact that are involved in signaling. Microscopic studies now track interactions of single signaling molecules within cells in real time. With the increasing acquisition of large quantities of data, computational approaches are being used to help understand the complexity of these signaling pathways.

Our hope here is to familiarize the reader with the latest discoveries in this field. We also hope that they convey a sense of the excitement about the incredible progress achieved over the last 20 years. The chapters cover a wide range of topics and, in aggregate, our hope is that they provide a comprehensive sense of the current state of the field.

We begin with discussion of TCR and BCR structure and function. Downstream of both of these receptors and receptors of the innate immune system, discussed next, are the protein tyrosine kinases (PTKs) of the Syk family. We continue with a chapter reviewing one of these PTKs, the central TCR-coupled kinase, ZAP-70, followed by chapters focusing on two of the proximal substrates of this kinase, LAT and SLP-76. Both chapters cover the topic of protein–protein interactions and signaling complexes. Members of the Tec family of PTKs, which are also activated following immunoreceptor engagement and are in turn responsible for activation of a variety of signaling enzymes, are the subject of the next chapter.

Engagement of antigen or immunoglobulin receptors alone does not result in full cellular activation. A number of additional receptors are required and this topic is reviewed in chapters on CD28 co-stimulation and the SLAM and SAP families of molecules. The activation of immunoreceptors leads to the activation of serine kinases and changes in lipid metabolism and ultimately in activation of transcription factors such as NF-κB, as well as to changes in the cytoskeleton; chapters on these
topics follow. We conclude with two chapters with a more global perspective. The first describes formation of the immune synapse of activated lymphocytes. Many of the molecules reviewed in the preceding chapters localize to this structure. The final chapter brings a systems approach to the study of the immense complexity of immunoreceptor signaling.

We hope that this collection brings together many of the major topics and approaches in this field. Perhaps this overview will aid in stimulating the next many years of fruitful research. We very much appreciate the efforts of several individuals at Cold Spring Harbor Laboratory Press. Richard Sever initiated the project and provided enthusiastic support for it. Kaaren Kockenmeister supervised production of the chapters and Joan Ebert guided and prodded editors and authors alike. Finally, we are grateful to our colleagues whose work has led the field and whose authorship is responsible for any success of this volume.
Index

A
Actin
meshwork in T-cell receptor function scaffolding, 238–241
translocation, 241–243
triggering of activation, 234–238
ADAP, 95, 114, 117–118, 122
AGC kinase, T-cell function, 189
Akt
CD28 signaling, 152, 158–159
PIP3 regulation, 201–202
T-cell function, 187–189, 192
All, 21
AMPK, 189–190
Antigen-presenting cell (APC), B-cells, 28
AP-1, 154
APC, See Antigen-presenting cell
Arp2/3, 95

B
B7-1, 150
B7-2, 150
Bam32, 47
B-cell receptor (BCR)
activation skeleton in B-cell activation
CD19 in B-cell spreading and activation, 47
Cell contraction and immunological synapse formation, 48–49
Microcluster formation after antigen stimulation, 44–46
overview, 39–40
prospects for study, 49
receptor distribution regulation in resting cell, 40–42
spreading propagation of microsignalsomes, 46–47
T-cell activation homology, 42–44
signaling
affinity and isotype influences on initiation, 32–34
mlg ectodomain, 30–32, 35
oligomerization
consequences of spontaneous, chronic oligomerization, 35–36
multivalent antigens in crosslinking, 29–30
translation into signaling, 34–35
prospects for study, 36–37
BCL10
lymphocyte activation, 223–225
lymphoma dysregulation, 227–228
structure, 219
Bcl-XL, 158–159
BCR, See B-cell receptor
Bimp3, See CARMA1
Blk, 46
BRSK, 189
Btk, 46, 64
BTLA, 151

C
Calcineurin, 137
Calcium/calmodulin-dependent protein kinase kinase (CAMKK), T-cell function, 186
CAMKK, See Calcium/calmodulin-dependent protein kinase
CARD, 155
CARD9, 56, 58
CARD11, See CARMA1
CARMA1
CD28 signaling, 155
domains and function, 219–220
lymphoma dysregulation, 227–228
phosphorylation, 220–223
structure, 218–219
Casein kinase-I (CK1), T-cell function, 188
c-Cbl, 93, 96
CBM proteins, See BCL10; CARMA1; MAIT1
CCR2, 63
CCR5, 63
CCR7, 192
CD1d, 3
CD2, 42
CD3
LAT complex studies, 97–98
T-cell development role, 20–21
T-cell receptor complex assembly
conservation of membrane-based receptor complex assembly, 9
functional ramifications, 9–10
mechanisms, 7–9
Index

CD3 (continued)
stoichiometry, 6–7
structural basis for intramembrane assembly, 9
CD14, 64
CD19
B-cell spreading and activation role, 47
T-cell function, 28–29
CD21, 47
CD22, 179
CD28
adapt proteins in signaling pathway initiation, 152–153
costimulation overview, 149–151
differentiation of T cells, 159–160
disease studies, 160
immunological synapse, 157–158
interleukin-2 production regulation
posttranscriptional regulation, 156–157
transcriptional regulation, 153–156
motif-specific protein–protein interactions, 151–152
survival enhancement of T cells, 158–159
CD40, 63
CD43, 97
CD44, 63
CD45, 42–44, 62, 97, 237, 271
CD80, See B7-1
CD81, 47
CD84, See SLAM receptors
CD86, See B7-2
CD148, 44, 62
CD152, See CTLA-4
Cdc42, 46, 115, 153, 238
Central supramolecular activating complex (cSMAC), 235, 240, 243, 248, 252–254
Chronic lymphocytic leukemia (CLL), ZAP-70 defects, 79–80
CLL, See Chronic lymphocytic leukemia
Cofilin, 46
CRACC, See SLAM receptors
CrKL, 77
Csk, 130
cSMAC, See Central supramolecular activating complex
CTLA-4, 150
CXCR1, 63
CXCR4, 63

Diacylglycerol (DAG)
kinesins, 204–205
metabolism, 203
microtubule-organizing center effects, 250
prospects for study, 208–209
Ras and protein kinase C activation control, 203–204
Diffuse large B-cell lymphoma (DLBCL), 36, 228
DLBCL, See Diffuse large B-cell lymphoma
DOCK8, 47
Dok-1, 95
Dok-2, 95

E
EAT2
deficiency phenotypes, 178–180
knockout mice, 176–177
properties, 174–175
prospects for study, 180–181
signaling mechanisms, 177–178
SLAM receptor interactions, 174
switch-of-function mechanisms, 180
ERK, See Mitogen-activated protein kinase
ERT
deficiency phenotypes, 178–180
knockout mice, 176–177
properties, 174–175
prospects for study, 180–181
signaling mechanisms, 177–178
SLAM receptor interactions, 174
switch-of-function mechanisms, 180

F
FAK, See Focal adhesion kinase
FcyR, signaling in platelets and neutrophils, 118–119
Fgr, See Src-family kinases
Fluorescence recovery after photobleaching (FRAP), LAT dynamics studies, 99
Focal adhesion kinase (FAK)
Src-family kinases in signaling, 64–65, 14-3-3, 190–192
FoxO, 192
FRAP, See Fluorescence recovery after photobleaching
Fyn, 18–19

G
GAD5, 155
GPCR, See G protein-coupled receptor
G protein-coupled receptor (GPCR), Src-family kinases in signaling, 63
Granulocyte, See Innate immune cell signaling
Grap, 89, 93
Grb2, LAT interactions, 18, 89, 93–97
GSK3, T-cell function, 188

Do not copy without written permission from Cold Spring Harbor Laboratory Press.
H

Hck, See Src-family kinases
HDAC, See Histone deacetylase
Histone deacetylase (HDAC), 191–192
HPK1, 220, 222

I

ICAM-1, 238, 240, 249, 252–253
ICOS, 150–151
IkB kinase (IKK), 155, 218, 223, 225–227
IKK, See IkB kinase
IL-2, See Interleukin-2
IL-6, See Interleukin-6
IL-17A, See Interleukin-17A
Immunological synapse (IS)
 B-cell contraction formation, 48–49
 CD28 signaling, 157–158
 central and peripheral supramolecular activating complex function, 253–254
 cessation mechanisms, 249–250
 computational modeling, 255–256
 cytoplytic killing function, 256
 functional overview, 248–249
 lymphocyte polarity
 antigen recognition, 250–251
 cell migration, 250
 Par proteins, 251
 microclusters, 252–253
 stable contacts for T-cell activation, 253
Inflammasome, Syk function, 65–66
Innate immune cell signaling
activating pathways
 CARD9 and receptor diversity, 56, 58
 classic immunoreceptor pathways, 56–57
inhibitory pathways
 classical inhibitory pathways, 58–60
 indirect down-modulation of pathway crosstalk, 61
ITAMs, 60–61
prospects for study, 66
Src-family kinases
 focal adhesion kinase/Pyk2 signaling, 64–65
 G protein-coupled receptor signaling, 63
 immunoreceptor pathways, 62
 interleukin-6 signaling, 63
 membrane-bound receptor signaling, 64
 overview, 61–62
selectin signaling, 63–64
Tec kinase signaling, 64
TRAF6 signaling complex, 63
Syk
inflammasome, 65–66
ITAM pathways, 65
overview, 65

Integrins, signaling in platelets and neutrophils, 119
Interleukin-2 (IL-2), CD28 in production regulation
 posttranscriptional regulation, 156–157
 transcriptional regulation, 153–156
Interleukin-6 (IL-6), Src-family kinases in signaling, 63
Interleukin-17A (IL-17A), Itk role in T H17 cell production, 136–137
IP3
 metabolism, 203, 208
 T-cell function, 205
IP4
 metabolism, 206, 208
 T-cell function, 206–208
IRAK, 218
IS, See Immunological synapse
Isotype switching, B-cell receptor signaling, 32–34
ITAM
 computer modeling of T-cell activation, 263–264
 innate immune cell signaling
 activating pathways, 56–58
 inhibitory pathways, 59–61
 Src-family kinases, 62
 Syk, 65
 lipid binding, 10–11
 membrane release mechanisms, 12
 structure of membrane-bound ITAM, 11
T-cell receptor signaling
 developmental functions, 20–22
 distribution, 16–17
 function of individual receptor chains and ITAMs, 18–20
 initiation, 17–18
 overview, 15
 prospects for study, 22–23
 tolerance role, 22
ZAP-70 recruitment, 71–72, 74–76
Itk
 activation downstream of T-cell receptor, 128–129
 disease defects, 141–142
 PLCγ1 activation, 129, 131–132
 regulation
 downregulation, 131
 multimerization, 132–133
 upregulation, 130–131
 substrate recognition mechanism, 131–132
T-cell function
 CD8+ T-cell signaling, 137–138
 development functions, 138–141
 differentiation and effector functions, 134
 interleukin-17A production in T H17 cells, 136–137
 knockout mouse studies, 133–134
 SLP-76 interactions, 115–116, 129–130
Itk (continued)
 T\textsubscript{H}1 differentiation and effector function, 135–136
 T\textsubscript{H}2 differentiation and cytokine production, 134–135
 Tec kinase domain structure, 127–128
Itpk, 200, 207–208
J
JNK, 153
K
KLF2, 192
L
LAT, See Linker for activation of T-cells
Lck, 76–77, 81, 157, 237–238, 240
Leu13, 47
LFA-1, 28, 48, 236, 241, 247–249, 252–253
Linker for activation of T cells (LAT)
 computer modeling of T-cell activation, 264–265
 functional overview, 72, 76, 89
gene cloning, 89–90
internalization and ubiquitylation, 101
mouse studies of function
 knock-in mutants of cysteine and phosphotyrosine sites, 102–103
 knockout mice, 101–102
 LAT-independent signaling, 103–104
 palmitoylation and membrane localization, 90–91
 structure, 89–90
T-cell signaling
 cooperativity
 associated proteins, 95–96
 binding studies, 96
 oligomerization induction, 96–97
Grb2 interactions, 89, 93–97
imaging of complexes
 assembly mechanism studies, 99–101
 dynamics studies, 101
 microclusters, 97–99
inhibitory actions, 95
overview, 91–92
phosphorylation, 92
PLC\textsubscript{Y}1 binding, 92–96
SLP-76 regulation, 89, 94–95
LKB1, 190
Ly-9, See SLAM receptors
Lyn, See Src-family kinases
M
Mac-1, 60
Macrophage, See Innate immune cell signaling
Major histocompatibility complex (MHC), T-cell receptor structure in restriction mechanism, 3–6
MALT1
 lymphocyte activation, 225–226
 lymphoma dysregulation, 227–228
 nuclear factor-\text{kB} activation, 226–227
 prospects for study, 228
 structure, 219
MAPK, See Mitogen-activated protein kinase
MARK, 189
Mast cell, See Innate immune cell signaling
MEKK1, 153
MELK, 189
MHC, See Major histocompatibility complex
Microtubule-organizing center (MTOC), 250–251
Mitogen-activated protein kinase (MAPK)
 computer modeling of T-cell activation, 266–268, 270
 T-cell function, 187–188, 190, 192–193, 238
Mlg, See B-cell receptor
MTOC, See Microtubule-organizing center
MyD88, 61, 218
N
Nck, 94, 112–114
Neutrophil, SLP-76 signaling, 118–122
NF-\text{kB}, See Nuclear factor-\text{kB}
NFAT
 computer modeling of T-cell activation, 267–268
 T-cell function, 77, 137, 154, 188–190
Nkx1, 173
NLRP3, 65
NTB-A, See SLAM receptors
NUAK, 189
Nuclear factor-\text{kB} (NF-\text{kB})
 CBM proteins in lymphocyte activation, See BCL10; CARMA1; MALT1
 CD28 signaling, 155, 158
 transcriotional activation, 217
O
Oct-1, 154–155
ORAI, 205
P
p21-\text{c}, 19
p23-\text{c}, 19
p85, PI3K, 18–19, 89, 94, 151–152
Par proteins, polarity, and immunological synapse
 function, 251
PD-1, 150
Index

PDK1, 152, 159, 188–189, 192, 201
Peripheral supramolecular activating complex (pSMAC), 250, 252–253
Phosphatidylinositol 3-kinase (PI3K)
deficiency and T-cell effects, 199
functional overview, 197
p85, 18–19, 89, 94, 151–152
Phospholipase C (PLC)
knockout mice, 200
PLCγ1
Itk activation, 129, 131–132
LAT binding, 92–96, 98, 203–205
SLP-76 binding, 116
PLCγ2 in B-cell activation, 46
structure, 203
T-cell function, 186, 203
PI3K, See Phosphatidylinositol 3-kinase
Pin1, 132
PIP2
metabolism, 195–197, 203
prospects for study, 208–209
protein domain binding, 196–197
PIP3
Akt regulation, 201–202
metabolism, 195–197
PH domain binding, 196–198, 201
prospects for study, 208–209
Tec kinases as effectors, 202–203
PKB, See Akt
PKC, See Protein kinase C
PKD, See Protein kinase D
Platelet, SLP-76 signaling, 118–122
PLCγ, See Phospholipase Cγ
Protein kinase B, See Akt
Protein kinase C (PKC)
DAG in activation control, 203–204
PKCθ, 155, 157–159, 253
Protein kinase D (PKD), T-cell function, 186
PSGL-1, 63
pSMAC, See Peripheral supramolecular activating complex
PTEN, 192, 200, 208
Pyk2, Src-family kinases in signaling, 64–65

S
SAP
deficiency phenotypes, 178–180
knockout mice, 176–177
properties, 174–175
prospects for study, 180–181
signaling mechanisms, 177–178
SLAM receptor interactions, 174
switch-of-function mechanisms, 180
X-linked lymphoproliferative disease mutations, 175–176
SCID, See Severe combined immunodeficiency
Selectin, Src-family kinases in signaling, 63–64
Severe combined immunodeficiency (SCID), ZAP-70 defects, 80–82
SGK, 189
Shb, 95
Shc, 18–19
SHIP-1, 95, 180, 200, 208
SHIP-2, 200, 208
SHIP-1, 19, 180, 268–269, 272
SHIP-2, 180
SIK, 189
SLAM receptors
functions
antibody stimulation studies, 171–172
ectopic expression studies, 172
genetic linkage analysis, 172–173
overview, 169–170
transgenic mouse studies, 173–174
properties, 170–171
prospects for study, 180–181
SAP family interactions. See EAT2; ERT; SAP
switch-of-function without SAP adaptors, 179–180
types, 170
SLP-76
domains and T-cell signaling
amino terminus and SAM domain, 114–117
function modeling following immunoreceptor engagement, 112–114
P1 domain, 117
SH2 domain, 117–118
homologs, 111
Itk interactions, 115–116, 129–130
LAT regulation, 72, 89, 94–96
miscellaneous functions, 122
neutrophil signaling, 118–122
platelet signaling, 118–122
SMAC, See Supramolecular activation cluster
Sos1, 96
Src-family kinases
innate immune cell signaling
focal adhesion kinase/Pyk2 signaling, 64–65
G protein-coupled receptor signaling, 63

Q
QIK, 189

R
Rac, 238
Ras, DAG in activation control, 203–204
Ras-GAP, 18–19
RIP-1, 218
Rlk, 134, 138, 140
RSK, 189
Src-family kinases (continued)
 immunoreceptor pathways, 62
 interleukin-6 signaling, 63
 membrane-bound receptor signaling, 64
 selectin signaling, 63–64
 Tec kinase signaling, 64
 TRAF6 signaling complex, 63
Lyn, 29
overview, 61–62
Supramolecular activation cluster (SMAC), 48
Syk
 functional overview, 65, 77–79
 innate immune cell signaling
 inflammasome, 65–66
 ITAM pathways, 65
 structure, 77–78
T-cell development role, 77–79

T
 T-cell receptor (TCR)
 actin meshwork function
 scaffolding, 238–241
 translocation, 241–243
 triggering, 234–238
 antigen-driven intrinsic event regulation, 35
 CD3 complex assembly
 conservation of membrane-based receptor
 complex assembly, 9
 functional ramifications, 9–10
 mechanisms, 7–9
 stoichiometry, 6–7
 structural basis for intramembrane assembly, 9
 computer modeling of activation
 antagonism and synergism studies, 268–269
 overview, 261–262
 prospects, 272–273
 quantitative data and modeling approaches, 262–265
 reconciliation of robustness and variability of
 activation, 271–272
 spatial regulation studies, 270–271
 specificity, sensitivity, and speed of signaling, 264, 266–268
 stochasticity, 270
 tunability of ligand response, 269–270
 ITAM
 lipid binding, 10–11
 membrane release mechanisms, 12
 signaling
 developmental functions, 20–22
 distribution, 16–17
 function of individual receptor chains and
 ITAMs, 18–20
 initiation, 17–18
 overview, 15
 prospects for study, 22–23
 tolerance role, 22
 structure of membrane-bound ITAM, 11
 ligand binding by extracellular domains, 1–3
 major histocompatibility complex restriction
 mechanism, 3–6
 overview of signaling, 233, 235
 TCR, See T-cell receptor
 Tec kinase family, See also Itk; Rlk
 innate immune cell signaling, 64
 PIP3 effector activity, 202–203
 TIRFM, See Total internal reflection microscopy
 TLRs, See Toll-like receptors
 Tolerance, ITAM-mediated signal amplification, 22
 Toll-like receptors (TLRs), Src-family kinases, and Syk in
 innate signaling, 61–62
 Total internal reflection microscopy (TIRFM), B-cell
 receptor activation studies, 41–42, 44–45
 TRAF2, 218
 TRAF6, 63, 225
 TRTEM-2, 60

V
 Vav, 46, 76, 94
 Vav1, 94, 112–113, 115, 117, 238–240
 VLA-4, 48, 243

W
 WASP, 77, 94–95, 114, 152

X
 XIAR, 176
 X-linked agammaglobulinemia, 141
 X-linked lymphoproliferative disease (XLP), SAP
 mutations, 175–176
 XLP, See X-linked lymphoproliferative disease

Z
 ZAP-70
 disease studies
 chronic lymphocytic leukemia, 79–80
 hypomorphic mutant mice, 82–83
 severe combined immunodeficiency, 80–82
 functional overview, 17, 19, 71–72
 ITAM recruitment, 71–72, 74–76
 regulation
 negative regulation, 77
 positive regulation, 76–77
 recruitment to T-cell receptor, 75–76
 structure, 72–75, 84
 T-cell development role, 77–79
 therapeutic targeting, 83–84