Preface

For more than 100 years, the morphogen concept has captured the imagination of experimental and theoretical biologists alike. The possibility that a single diffusible molecule could specify and pattern many different cell fates was attractive for its simplicity and promised to open the door to a quantitative understanding of development. However, for many years, morphogens remained abstract concepts. Quantitative studies were impossible and although the ideas continued to be discussed, they had limited practical use. Thanks in large part to the revolution brought about by molecular genetics, this situation changed in the late 1980s and early 1990s, when the molecular identities of several morphogens were revealed. With specific molecules in hand, biologists began to design rigorous tests of morphogen action, and were able to confirm many predictions from the past. Further developments in molecular biology and imaging have bolstered our ability to observe morphogens and to measure their effect on target gene expression and cellular responses. Consequently, the field now spans the whole biological scale, from experiments that track single molecules to tissue-wide analyses of cell behavior and even genomic screens.

Three main questions have been the focus of much work during the past decade: What are the mechanisms that ensure the formation of stable and reliable morphogen gradients? How do cells within a field assess their position by reading the local morphogen concentration? How are the graded responses of cells transformed into differential gene expression to control the fate and behavior of cells? These questions are the main subjects of this collection. The latest thinking about a variety of tissues patterned by morphogens is described and several authors have taken this opportunity to set these ideas in the historical context of the field. State-of-the-art experimental approaches in different model systems are introduced. We hope these will provide a reader new to the subject a sense of the field’s diversity and also offer fresh inspiration to the seasoned morphogen researcher. In addition, we have taken advice from mathematically minded scientists who have made important contributions to our understanding of morphogens. Several contributions describe quantitative analyses of the formation and interpretation of morphogen gradients. Although these are sophisticated and rigorous, they are also accessible. Indeed, one of our aims has been to identify common ground for experimentalists and theoreticians, thus stimulating further exchanges between the two cultures. We believe such an active dialogue is now essential for further progress. It is only through these interactions that we will gain a better understanding of how the exquisitely patterned tissues that are the hallmark of embryogenesis are produced so reliably by the action of morphogens.

We are indebted to the authors for their excellent contributions and to Eric Wieschaus and Thomas Gregor for the cover illustration. We would like to thank Richard Sever at Cold Spring Harbor Laboratory Press for initiating this project. Thanks are also due to Inez Sialiano for keeping authors and editors on track and to Denise Weiss and Kaaren Kockenmeister for their diligent work on this collection.

James Briscoe
Peter A. Lawrence
Jean-Paul Vincent
London and Cambridge
30 May 2009
Index

A
Activin
 nodal morphogens and, 105, 109–112, 115, 117, 120, 121
 in Xenopus, 7, 29, 76, 85–88, 89f, 90–91, 119, 121, 237
Ambsytoma mexicanum, 83
amphibians. See Xenopus
antidorsalizing morphogenetic protein (ADMP), 26, 48
apical ectodermal ridge (AER), 189, 190f. See also vertebrate limb development
axolotl, 32–34

B
BAMBI (BMP and activin membrane bound inhibitor), 99
β-catenin
 graded stabilization of, 173–174
 role in differentiation of PSM cells, 175
 silencing effects in planarian regeneration, 131–135
Bicoid (Bcd) gradient in Drosophila, 5, 7, 10, 15, 41–44, 245
Boc transmembrane protein, 208–209
bone-morphogenetic protein (BMP)
 DPP (see Decapentaplegic [Dpp])
 in Drosophila, 44, 46
 extracellular antagonists in Xenopus, 99
 ligands in Xenopus, 47–48, 97–99
 organizer formation model and, 26
 pathway regulation in dorsoventral axis of planarians, 135–136
 relationship between signaling and clearance, 55
 roles of HSPGs in signaling and distribution, 75–76
 Screw, 44
brain gradients
 clonal anatomy of area specification, 228
 COUP-TFI and FGF signaling, 224–225
 evolutionary implications of patterning system, 228–229
 FGF signaling role, 221–224
 neocortex structure and function, 218, 219f
 neocortical area formation, 220–221
 radial unit hypothesis of neocortex development, 218–220
 secreted signaling factor patterning of neocortical protomap, 221–224
 transcription factor gradients and patterning, 225–226
 translation of transcription factor gradients, 226–228
 Brinker (Brk), 158

C
Cactus, 236
Cdo transmembrane protein, 208–209
cell polarity specification. See planar polarity in the insect cuticle
chemical pheromone gradients. See yeast and chemical pheromone gradients
chemotaxis and cell sorting, 294–295
chick and TGF-β, 91–92
Chordin, 26, 99. See also Xenopus gastrula
COUP-TFI and FGF signaling, 224–225
Crossveinless-2 (CV2), 100–101
Cyclops and Squint, 110, 115, 116–117, 118, 120
cytokine model, 70

dachous (ds), 257–259
DALLY (division abnormally delayed), 71, 73, 74
Dally-like (dlp), 71, 73, 74
Decapentaplegic (Dpp)
 connection to the cell cycle, 161–163
 diffusion analysis, 7, 10
 in the dorsal domain, 44, 236
 gradient model of uniform proliferation, 159–161
 inhibitor model of uniform proliferation, 161
 intrinsic growth control models of uniform proliferation, 163–166

*Page references followed by f denote figure; those followed by t denote table.
Decapentaplegic (Dpp) (continued)
memory model of uniform proliferation, 159
pathway regulation in dorsoventral axis of planarians, 135–136
restricted diffusion model and, 68–69
roles of HSPGs in signaling and distribution, 75–76
sequence of pattern regulation, 158–159
steamroller model of uniform proliferation, 161
threshold model of uniform proliferation, 159
deformed in Drosophila, 28
detection sensitivity, 16
Dictyostelium, 290–291. See also patterning, without morphogen gradients
differential adhesion and cell sorting, 294–295
differentiation inducing factor-1 (DIF-1), 293–294
diffusion equation (Fick’s second law), 5, 7, 8f, 9–10
division abnormally delayed (DALLY), 71
dl (Dally-like), 71
Dorsal activity patterns in Drosophila
cis-regulatory control of dorsoventral axis patterning, 237–238
differential expression of target genes, 236–237
gene regulatory network
biological insights into patterning, 241–242
classification of dorsoventral patterns, 239–241
control of patterning and cell movement, 242–243
initial insights, 238
tiling arrays and ChIP techniques, 241
initiation of nuclear gradient, 233–236
pattern-formation model, 25
dpp. See Decapentaplegic
Drift in gradients, 14
Drosophila
Bicoid gradient in, 5, 7, 10, 15, 41–44, 245
bone-morphogenetic protein in, 44, 46
deformed in, 28
Dorsal activity patterns in (see Dorsal activity patterns in Drosophila)
graded distribution of Wingless in, 255
planar polarity in (see planar polarity in the insect cuticle)
ds (dachsous), 257–259

E
Emx2, 225–226
epiphenesis, 129–130

F
Factor X, 255, 257–259
fat (ft), 257–259
fate maps, 296–298
Fgf8 protein, 171
FI (fluorescence intensity), 16
fibroblast growth factor (FGF)
control of gastrulation movements, 179–181
COUP-TFI and FGF signaling, 224–225
homeotic transformations linked to, 178–179
involvement in gradient interpretation and axial specification, 177–178
signaling gradients establishment in vertebrates, 170–174
signaling role in brain gradient, 221–224
Fick’s second law, 5, 7, 8f, 9–10
Fj/Ft/Ds, 258–259
fluorescence intensity (FI), 16
fourjointed (fj), 257. See also planar polarity in the insect cuticle
French flag model of positional information, 2, 83, 96, 157, 190
frizzled (fz), 131, 252–255
ft (fat), 257–259

G
Gas1, 208–209
generation and decoding of morphogen gradients
canonical model, 38
generalties regarding robustness mechanisms, 49–50
mechanistic basis for scaling, 47–48
noncanonical gradient formation, 44, 45f
pre-steady-state decoding, 40–41
pre-steady-state decoding analysis of Bicoid, 41–44
self-enhanced degradation and enhanced robustness, 38–40
shallow gradients used to define sharp activation borders, 48–49
shuttling mechanism proposal, 46–47
shuttling of BMP ligands in Xenopus, 47–48
types of feedback involved, 39–40
GLI transcriptional activator/repressor, 195
glypicans, 70–71, 78
goosecoid, 90. See also Xenopus
gradient models
activator and inhibitor in pattern-formation reactions, 24
basic reaction types summary, 34
cell determination boundaries, 32–34
cytoneme, 70
final size question, 163–166
gene activations by autoregulatory feedback, 27–30
graded competence in organizer formation, 31
Index

gradient, 159–161
inhibitor, 161
intrinsic growth control, 163–166
lipoprotein transfer, 69–70
memory, 159
multiple head regeneration in planarians, 32
organizer formation, 25–26
organizer region effects, 31
pattern-formation, 23–25
planar polarity, 262–263, 264f
planar transcytosis, 69
for primary body axes in vertebrates, 26–27
restricted diffusion, 67–69
sequence of pattern regulation, 158–159
significance of relative levels of gradients in
hydra, 30–31
steamroller, 161
tentacle and foot formation in hydra, 31–32
threshold, 159
for uniform proliferation, 157, 159–161,
164–165
gradients
in the brain (see brain gradients)
in Drosophila (see Dorsal activity patterns in
Drosophila)
historical background to studies on, 1–3
mesoderm induction in Xenopus (see Xenopus)
models for generation and interpretation of
(see gradient models)
morphogen (see morphogen gradients)

H
Hb (Hunchback), 41, 43
Heartless (Htl), 242
Hedgehog (Hh)
restricted diffusion model and, 68–69
roles of HSPGs in signaling and distribution,
74–75
self-enhanced clearance and, 55
heparan sulfate proteoglycans (HSPGs)
feedback loops and, 38–39
gradient formation models, 67–70
roles in gradient formation
biochemistry, 70–71, 72f
biphasic activity in Wg signaling, 74
BMP signaling and distribution, 75–76
core protein versus HS GAG chains, 77
Hh signaling and distribution, 74–75
morphogen signaling and distribution in
vertebrates, 76
regulation of cell surface HSPGs, 77–78
shape modulation, 14–15
shedding, 78
Wg signaling and distribution, 71, 73–74
in Xenopus, 101
hetero-trimeric G-protein in yeast, 271–273, 274f
Hh. See Hedgehog
Hippo signaling pathway, 77, 162–163
Hox gene, 178
HS chains, 71, 77
HSPGs. See heparan sulfate proteoglycans
Htl (Heartless), 242
Hunchback (Hb), 41, 43
Hyβ-cat, 149
HyDKK1,2,4, 150
hydra
axial patterning process
bud formation, 147–148
described, 144–146
head regeneration, 147
morphogenesis and cell differentiation,
146–147
tissue dynamics in adults, 146
control of tentacle and foot formation in,
31–32
head inhibition and activation gradients, 148
head organizer, 148–150
maintenance of head organizer, 150–151
significance of relative levels of gradients in,
30–31
structure of, 143–144
HyWnt-16, 150

I
inhibitor model for uniform proliferation, 161
innexins, 135
insect cuticle. See planar polarity in the insect cuticle

L
Lefty, 25, 111, 117, 118, 119. See also Nodal signaling
pathway
lipoprotein transfer model, 69–70
LRP, 131

M
memory models for uniform proliferation, 155, 157,
159, 160f
mesoderm posterior 2 (Mesp2), 174
models. See gradient models
morphallaxis, 130
morphogen gradients
achieving robustness in (see morphogen-
mediated patterning)
experimental measurements of
absolute concentrations, 16–17
morphogen gradients (continued)

detection sensitivity, 16
function of genes involved in morphogen transport, 17
kinetic analysis using FRAP, 17, 18f, 19
target gene expression domains, 15
field concept in *Xenopus* (see *Xenopus* gastrula)
pattern formation models (see gradient models)
in planarians (see planarian regeneration)
quantitative analysis of formation process
(see generation and decoding of morphogen gradients)
regulation of organ growth by (see organ growth regulation)
shaping by proteoglycans (see heparan sulfate proteoglycans)
source regions (see organizer regions)
theoretical descriptions of formation
active transport, 13
concentration dilution due to growth, 14
continuum models, 5
derivation of diffusion and degradation terms, 6–7
diffusion equation solution, 9–10
directional bias, 13
discrete models, 3, 5
drift, 14
early models, 3
fine-tuning gradient shape, 14–15
gradient modulators, 14–15
gradients formed by cell lineage transport, 13–14
gradients formed by diffusion and linear degradation, 7, 9–10
gradients formed by diffusion and nonlinear degradation, 11–13
mathematical modeling, 3–4
steady state conditions, 3–4
steady-state formation by diffusion, 5, 7, 8f

SEC strategy performance in different situations, 62–64
morpholino oligonucleotides (MOs), 87
mouse and TGF-β, 91
multiple growth parameter models of uniform proliferation, 157–158

N

neocortex development. See brain gradients
Nodal/Lefty2-system, 25
Nodal signaling pathway
concentration-dependent effects of signals as morphogens, 116
direct long-range effects of signals as morphogens, 115–116
left-right patterning development role, 114–115
mesendoderm induction development role, 113–114
modulation of activity through expression, 118–119
modulation of activity through interpretation, 121
modulation of activity through stability and movement, 119–121
overview, 109–110
reaction–diffusion system signals as morphogens, 117–118
receptors and signal transducers, 111–112
signals, convertases, and extracellular antagonists, 110–111
time-dependent effects of signals as morphogens, 116–117
transcription factors and target genes, 112–113
Noggin, 99. See also *Xenopus* gastrula
nou-darake restriction of brain tissues in planarians, 136–137, 139

O

Ont1, 100
organ growth regulation
DPP gradient and uniform proliferation
final size question, 163–166
gradient model, 159–161
inhibitor model, 161
intrinsic growth control models, 163–166
memory model, 159
sequence of pattern regulation, 158–159
steamroller model, 161
threshold model, 159
DPP’s connection to the cell cycle, 161–163
relationship between patterning and growth, 153–154
uniform proliferation
evidence of and support for scaling, 157
gradient models, 157
memory models, 155, 157, 160f
multiple growth parameter models, 157–158
during organ development, 154–155,
156f, 157
threshold models, 157

organizer regions
graded competence in organizer formation, 31
head organizer in hydra, 148–151
models showing effects of, 31
organizer formation, 25–26
organizer formation model and BMP, 26
organizer formation model and Wnt, 26
Spemann organizer, 1, 25–26

paraxial mesoderm development
gradient interpretation and axial specification
control of gastrulation movements by Wnt
and FGF, 179–181
homeotic transformations, 178–179
PSM gradients, segmentation clock, and Hox
gene expression, 178
Wnt, FGF, and RA signaling involvement,
177–178
mechanisms of gradient generation in the PSM
FGF and Wnt signaling gradient
establishment, 170–174
gradient interaction with the segmentation
clock, 175–177
PSM maturation determination front
definition, 174–175
RA signaling activity, 170, 171f
sequence involving the PSM, 169–170
pattern-formation gradient models, 23–25

patterning
axial patterning process in hydra, 144–150
in brain gradients
evolutionary implications of system in the
brain, 228–229
of neocortical protomap, 221–224
transcription factor gradients and, 225–226
translation of transcription factor gradients,
226–228
Dorsal activity patterns in Drosophila
biological insights into patterning, 241–242
cis-regulatory control of dorsoventral axis
patterning, 237–238
classification of dorsoventral patterns, 239–241
control of patterning and cell movement,
242–243

pattern-formation model, 25
Dorsal-Ventral, in Xenopus, 96, 97f
left-right patterning development role in Nodal,
114–115
morphogen-mediated
advantages of nonuniform decay, 57
details of gradient formation, 55, 57
detection noise types, 60–62
limitations to lowest levels of morphogen
gradients, 60–62, 63f
limitations to top levels of morphogen
gradients, 57–60
mathematical modeling of shapes, 56–57
quantifying robustness in terms of relative
movement, 57
relationship between synthesis and clearance,
59–60
robustness and, 53–54
SEC described, 54–57, 58f
SEC strategy performance in different
situations, 62–64
relationship between patterning and organ
growth, 153–154
vertebrate limb development
AER control of outgrowth and patterning of
the PD limb axis, 189, 190f
integration of PD and AP patterning,
196–197
ZPA control of AP limb-bud patterning,
189–191
vertebrate neural tube
dynamic interpretations of morphogen
gradients, 213–214
by graded SHH signaling, 202–207
negative feedback loops, 208–213
without morphogen gradients
cell type differentiation and proportioning,
293–294
in Dictyostelium, 290–291
differentiation of prestalk and prespore cells,
291–292
fate maps and intermingling of developing
cells, 296–298
general patterning mechanism hypothesis,
293–296
scattered vs. positional differentiation, 295
sorting mechanism, 294–295
sorting out process, 289–290
Pax6, 225
PEA3 group of transcription factors, 223
perlecans, 70–71
pheromones and chemotropism in yeast. See yeast
and chemical pheromone gradients

planarian regeneration
Planarian regeneration (continued)

BMP pathway regulation in dorsoventral axis, 135–136
control of brain differentiation
connection between noudarake and canonical Wnt pathway, 139
default states for neoblasts, 137–139
noudarake restriction of brain tissues, 136–137
gap-junctional communication, 135
observations of multiple head, 32
re-establishment of axial polarity, 130–131
Smed-bcatenin1 silencing effects, 131–135
Smed-wnt-class of morphogens, 135
Wnt/b-catenin pathway regulation of anteroposterior axis, 131–135
planar polarity in the insect cuticle
frizzled function and planar polarity, 252–255
general principles, 252
gradients in the eye
discovery of Wg signaling pathway, 255
Fj/Ft/Ds, 258–259
investigation into the identity of Factor X, 257–259
missing gradients in the wing, 259–260
models of gradient action, 262–263, 264f
research focusing on the abdomen, 260–262
transplantation experiments history, 249–252
planar transcytosis model, 69
positional memory, 90
presomitic mesoderm (PSM), 170. See also paraxial mesoderm development
progress zone model, 189, 190f
protocortex hypothesis of neocortical area formation, 220–221
protomap hypothesis of neocortical area formation, 220–221
PSM (presomitic mesoderm), 170. See also paraxial mesoderm development
Pyramus (Pyr), 242

R

RA signaling, 40
homeotic transformations linked to, 178–179
involvement in gradient interpretation and axial specification, 177–178
involvement in paraxial mesoderm development, 170, 171f, 177–178
as a proximalizing morphogenetic signal, 191
role of, 174, 175, 176f
reaction–diffusion model, 1–2
Reggie1, 15
region of interest (ROI), 16
restricted diffusion model, 67–69
rhomboid (rho), 236
robustness of gradients. See morphogen-mediated patterning

S

Screw, 44
segmentation clock, 175–177, 178
self-enhanced clearance (SEC), 54–57, 58f. See also morphogen-mediated patterning
sensitivity coefficient, 57
SHH. See Sonic Hedgehog
Short gastrulation (Sog), 44, 46, 236
Sizzled (Szl), 100
Smad, 109. See also Nodal signaling pathway
Smed-bcatenin1 silencing effects in planarians, 131–135
Smed-wnt-class of morphogens, 135
Snai genes, 175
Sog (Short gastrulation), 44, 46, 236
Sonic Hedgehog (SHH)
cellular response to signaling, 195
models for specification and differentiation front, 192–193
specification of the AP limb axis and digit identities, 193–195
vertebrate neural tube patterning by graded signaling, 201
process overview, 202
regulation of Gli activity by SHH signaling, 205–207
temporal adaptation mechanism, 207–208
temporal and spatial gradient of SHH, 202–205
Sp8, 225
Spätzle (Spz), 236
Spemann organizer, 1, 25–26
Squint. See Cyclops and Squint
steamroller model for uniform proliferation, 161
syndecans, 71, 78
Szl (Sizzled), 100

T

target gene expression domains, 15
temporal adaptation, 208
tentacle and foot formation in hydra, 31–32
TGF-β
nodal signaling pathway and (see Nodal signaling pathway)
in Xenopus mesoderm, 91–92
thickveins (Tkv), 57, 70
Thisbe (Ths), 242
threshold model for uniform proliferation, 157, 159
Toll, 25, 236–237
Toloids (Tld), 99–100, 236
transforming growth factor type β. See TGF-β
twisted gastrulation (Tsg), 100

twisted gastrulation (Tsg), 100

U
Ultrabithorax, 77
uniform decay (UD) gradient, 57
uniform proliferation and organ growth
evidence of and support for scaling, 157
gradient models, 157, 159–161
inhibitor models, 161
intrinsic growth control models, 163–166
memory models, 155, 157, 159, 160f
multiple growth parameter models, 157–158
during organ development, 154–155, 156f, 157
sequence of pattern regulation, 158–159
steamroller model, 161
threshold models, 157, 159

Unpaired (Upd), 255. See also planar polarity in the
insect cuticle

V
ventral neuroblasts defective (vnd), 236
vertebrate limb development
AER control of outgrowth and patterning
of the PD limb axis, 189, 190f
AER-FGF signaling promotion of distal
progression, 191–192
digit specification or determination, 195–196
integration of PD and AP patterning, 196–197
models for specification and differentiation
front, 192–193
RA as a proximalizing morphogenetic
signal, 191
sequence of events, 187–189
SHH specification of the AP limb axis and digit
identities, 193–195
vertebrate neural tube patterning
dynamic interpretations of morphogen
gradients, 213–214
by graded SHH signaling
process overview, 202
regulation of Gli activity, 205–207
temporal adaptation mechanism, 207–208
temporal and spatial gradient, 202–205
negative feedback loops
initiation of the ventral specification
program, 208–209
Ptc1 and Hhip1 contribution to readout of
graded SHH signaling, 209–212
shaping of graded readout of SHH
signaling, 208
transcriptional response of cells and, 212–213
vertebrates
gradient formation models and, 70
gradients for primary body axes in, 26–27
gradients in embryonic development
(see paraxial mesoderm development)
limb development (see vertebrate limb
development)
morphogen signaling and distribution in, 76
neural tube patterning (see vertebrate neural
tube patterning)
vestigial (vg), 162–163
vnd (ventral neuroblasts defective), 236

W
Wingless (Wg)
diffusion analysis, 7, 10
graded distribution in Drosophila, 255
in planarians, 131
restricted diffusion model and, 68–69
roles of HSPGs model and, 71, 73–74
self-enhanced clearance and, 54–55
Wnt pathway
central role in controlling differentiation of
PSM cells, 175
control of gastrulation movements, 179–181
head organizer role in hydra, 148–150
homeotic transformations linked to, 178–179
involvement in gradient interpretation and
axial specification, 177–178
organizer formation model and, 26
in planarians, 131–135, 139
signaling gradient establishment in vertebrates,
170–174
Wolpert's model. See French flag model of
positional information

X
Xbra, 90. See also Xenopus
Xenopus
cell interpretation of morphogen
concentrations, 90–91
establishment of long-range gradients, 88, 89f
mesoderm induction, 83–85
self-regulating morphogenetic gradient
(see Xenopus gastrula)
shuttling of BMP ligands in, 47–48
TGF-β family role in other species, 91–92
in vitro evidence for graded signaling, 85, 86f, 87
in vivo evidence for graded signaling, 87
Xenopus gastrula
 biochemical pathway for molecular interactions, 101–103
BMP ligands, 97–98
Dorsal–Ventral patterning, 96, 97f
future prospects, 104–105
mathematical modeling of extracellular network, 103–104
molecular anatomy of, 96–98
receptors and intracellular signaling
 BAMBI, 99
 Chordin proteases and their regulators, 99–100
 Crossveinless-2, 100–101
 extracellular BMP antagonists, 99
 receptor classes for BMP ligands, 98–99
 Twisted gastrulation, 100

Y
Yan protein, 48–49
yeast and chemical pheromone gradients
 cellular responses
 cell shape changes, 277, 278–279t
directional growth, 277, 278–279t, 279–281
gene induction, 277
growth site/polarity axis establishment, 281–282
chemical gradients described, 269–270
perspectives and outstanding questions, 283–284
sensing and detection of gradients
 detection of small differences in ligand concentration, 273, 275–277
 gradient sensing, 276
 hetero-trimeric G-protein, 271–273, 274f
 pheromone receptors, 270–271, 272f
 signal amplification, 282–283

Z
zebrafish and TGF-β, 91–92
zerknüllt (zen), 236
zone of polarizing activity (ZPA), 189–191. See also vertebrate limb development